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Discovering Declarative Process Models from Event Logs 

through Temporal Logic Query Checking

Abstract:

This thesis will focus on the discovery of temporal logic constraints from an event log. The 

constraints are the description of the behavior of a business process. We will use Temporal 

Logic Query Checking for this  purpose.  A temporal  logic query is  a type of modal logic 

expression containing one or more placeholders that are checked against a transition system. 

The transition system is built from an event log. The result lists all possible activities that can 

replace the placeholders to satisfy the constraints  described by the query in the log.  This 

approach does not require (as many other approaches in the literature) negative examples as 

(additional) input and it provides the possibility of discovering a wider range of constraints to 

describe the process with respect to the existing approaches.
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Deklaratiivsete  protsessimudelite  avastamine  sündmuste 

logist kasutades temporaalloogika päringuid

Lühikokkuvõte:

Käesolev magistritöö keskendub protsessile seatud piirangute avastamisele sündmuste logist, 

mida  saab  väljendada  temporaalloogika  abil.  Piirangute  avastamise  meetodina  kasutame 

temporaalloogika päringute kontrollimist sündmuste logi vastu. Temporaalloogika päring on 

modaalloogika  avaldis,  mis  sisaldab  muutujaid,  mis  võtavad  oma  väärtuse 

automaarpropositsioonide hulgast. Temporaalloogika päring käivitatakse vastu olekumasinat, 

mis on konstrueeritud sündmuste logi järgi.  Päringu tulemuseks on kõik temporaalloogika 

avaldised,  kus  muutujad  on  asendatud  kõikvõimalike  automaarpropositsioonidega,  mis 

muudavad  avaldise  tõeseks  antud  olekumasinas.  See  meetod  ei  vaja  protsessi  piirangute 

avastamiseks negatiivseid näiteid (protsessi juhtumid, mis ei tohi aset leida) sündmuste logis 

nagu osa avaldatuid meetodeid vajab.  See meetod samuti  laiendab võimalike avastatavate 

piirangute hulka võrreldes olemas olevate meetoditega.

Võtmesõnad:

Protsesside  kaeve,  deklaratiivsed  mudelid,  temporaalloogika,  LTL.  CTL,  mudeli 

kontrollimine, päringu kontrollimine
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Introduction
Organizations run processes to create value for their customers. In small organizations usually 

one person can run all the processes involved in the daily activities. It is enough to have a pen  

and paper or a spreadsheet application to organize the work – all the processes are very simple 

or there are very few number of processes to execute. When the number of processes grow 

and the complexity increases, this is not possible anymore. 

To help people execute complex business processes with a low amount of errors, a lot of work 

is performed by computers. With the help of computer software, it is also possible to automate 

several steps in the process, guide users to choose from a subset of activities and disallows 

them to start  activities that  are  forbidden at  a  certain state.  For example,  in  a  process of 

invoicing a customer for provided services, the accountant can prepare the invoice, but cannot 

send it out, before somebody from the board has not approved it.

For communication purposes, it is required to convey information about processes: what are 

the activities involved, in which sequence activities are executed, who is doing what, etc. One 

way to describe a business process is to draw a diagram – creating a visual model of the 

process. Process models are essential  to introduce the process to new people,  analyze the 

process for efficiency, make decisions. The more precise and up to date the models are, the 

more useful they are.

Figure 1 is a model of a very simple process for sending out invoices. The first activity in the 

process is to prepare the invoice, then it must be approved and after that it can be sent out. 

This model is represented using the Business Process Modeling Notation (BPMN) [1]. BPMN 

is an imperative modeling language – only the transitions that are presented in the model are 

allowed, everything else is forbidden. The case, when a person prepares an invoice and sends 

it out without getting an approval, is illegal with respect to the model in Figure 1. Other such 
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modeling languages are, but not limited to, Event-driven Process Chains [2] (EPC), Activity 

diagrams [3] and Petri net [4]. 

Another way to describe a process model is to present the restrictions and allow everything 

that  is  not  in  the  model  opposed  to  imperative  models.  These  models  are  classified  as 

declarative process models – the activity flow is not implicitly defined.

To help organizations to make better  decisions about their  internal processes,  the analysts 

must  evaluate  the  effectiveness  of  the  processes  employed.  The  more  the  process  model 

reflects  the  real  situation  the  better  decisions  can  be  made.  There  are  several  ways  of 

generating a  process  model,  but  two “extremes” are:  interviewing people involved in  the 

process or getting information from the event logs generated by the application supporting the 

process. The first approach could produce models that are far from the reality, because people 

tend  to  have  a  subjective  point  of  view about  how the  process  is  executed.  The  second 

approach produces models that are closer to the reality (if the quality of available data is good 

enough). Usually mixture of activities are involved during the process model discovery [5].

Discovering  process  models  from  event  logs  is  one  of  the  three  main  process  mining 

branches. The event log (used as input) is produced by a business application and the output is 

the discovered process model [5]. For example, when a company sells a product, all activities 

(e.g. “Receive Order”, “Receive Payment”, “Ship Products”, “Send Invoice” and “Archive 

Order”) are recorded by an information system. Each time somebody enters data to the system 

an entry to the event log is created. At some point in time the log is archived and it can be 

analyzed with process mining tools to produce a process model.

To  advertise  the  field  of  process  mining,  a  manifesto  [6] has  been  written  to  describe 

guidelines to developers and research challenges. The manifesto is an attempt to get all people 

involved in process mining acknowledged about the efforts done so far and to continue further 

research with the same goals in mind. 

Traditional process discovery techniques are based on imperative process models. Imperative 

models  better  describe  well  structured  processes,  where  each  activity  has  few transitions 

between activities. However, in flexible processes a person may freely choose in which order 

activities are  performed.   For example a  doctor  in  a hospital  can choose from variety of 

treatments to be provided to the patient.  

When  the  number  of  possible  sequences  of  activities  grows  in  a  flexible  process,  the 
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conventional  imperative  models  start  to  become  unreadable  and  produce  the  so-called 

spaghetti-like models (see Figure 2: Imperative model of a flexible process). 

Flexible processes can be effectively described using declarative models. In the case of the 

hospital example, the declarative model will contain all possible treatments and constraints to 

restrict the use of some of them. A declarative model can be defined using Temporal Logics 

[7], Regular Expressions [8] or Logic Programming [9]. 

This thesis will try to prove that through Temporal Logic Query Checking it is possible to 

widen the amount of possible temporal logic constraints that can be discovered with respect to 

the ones that can be discovered with the approaches developed so far [10], [11] and [12] thus 

being  able  to  produce  models  with  a  higher  expressive  power.  The  existing  tools,  for 

discovering declarative process models, have the limitation of discovering only a predefined 

(hard-coded) set of constraints. Adding the possibility of discovering new constraints requires 

development effort. Through user-defined queries, the constraints are constructed at run-time 

based on the query and the model. Another advantage is that this approach (differently from 

others, like the one proposed in [12]) does not need negative examples and they can easily be 

used on logs (that typically only contain positive information,  i.e.,  how things  have been 

done).

As proof of concept of our approach, a query checking algorithm similar to the one presented 

in  [13] is  implemented,  but  optimized  to  discover  process  models.  The  user  provides  a 

Temporal Logic query (i.e., a Temporal Logic formula including one or two placeholders) 

and, then, this query is evaluated against a model (in our case the event log) to replace the 

placeholders with Temporal Logic sub-formulas. The result is a Temporal Logic formula that 

is valid on the log. 

The main research question addressed in this thesis is: 

RQ1: Can Temporal Logic Query Checking improve the discovery of declarative  

process models from event logs? 

The definition of ‘improve’ is intentionally not given. In fact, RQ1 consists of two questions. 

(a) the improvement could be in terms of performance, i.e., the developed tool can produce 

models faster than other existing tools, but more interesting is (b) the tool can make more 

insights of the process to be discovered. 

7



Another goal is also to improve the usability of existing solutions, but this is out of the scope 

of the thesis. 

In summary the improvement is expected to come from the fact that this approach does not 

need negative examples and can use much wider range of constraints with respect to the state 

of the art.

Besides the main research question the second question is: 

RQ2: Does the tool have a business value? 
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Figure 2: Imperative model of a flexible process



The  question  is  implicitly  answered,  when  there  is  evidence,  that  there  is  significant 

improvement of existing tools. But this is still theoretical conclusion. The real answer is to 

understand whether some companies or organizations are willing to invest money for using 

this approach.

The business value of the solution for companies and organizations would be to use their 

existing  log  files  to  model  through  our  developed  tool,  what  is  really  happening  in  the 

company. Upon the generated models concrete decisions can be made. Also the tool would 

raise questions to the analysts about the process. 

A study [14] was conducted to evaluate whether declarative process modeling is applicable in 

industry. The study starts by reflecting doubts, whether it can be used outside academic world. 

During the experiment, group of specialist,  who were experts in process modeling,  where 

given different tasks using declarative process modeling tools. Overall the participants agreed 

that  there  is  the  benefit  of  using  declarative  process  models,  but  not  in  every case.  The 

conclusion was that industry would benefit the most from hybrid systems.

The  proof  of  concept  of  the  approach  has  been  implemented  as  a  standalone  software 

package. The application takes an event log and a list of queries as input. The log is converted 

to  a  transition  system and  each  query  is  checked  against  it.  The  result  is  a  list  of  LTL 

constraints, which hold in the log.

The thesis continues with the overview of process mining and it connection to temporal logic; 

description of the solutions; evaluation of developed application and a case study. Finally 

related work is and a conclusion is discussed.
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Background 
Business process models are a good resource for convening information about processes in an 

organization or between organizations. Different stakeholders are using models for different 

purposes – executives use them for decision making, human resources to introduce a process 

to  new  people  and  system  developers  during  implementation.  One  property  all  the 

stakeholders alike are expecting from process models is that the process models must reflect 

the reality as accurately as possible.

Process Mining

Process mining is a field between process modeling and analysis on one side and data mining 

and machine learning on the other. Usually the process mining starts with an event log. Event 

log is just a set of process instances and a process instance is a trace of events. Event is an 

atomic action with at least a name and a time stamp. The techniques to process an event log 

come from the field of data mining, but no existing algorithm was sufficient to discover the 

relations between two activities in a process model. From data mining the main ideas used are 

the apriori algorithm for discovering frequent items and association rules, sequential pattern 

discovery [15] and episode mining [16]. The main drawback is that these algorithms are good 

detecting local patterns in the log, but are unable to generate an overall process model from it. 

Process mining consists of three major parts: model discovery,  conformance checking and 

enhancing existing models. The most challenging is to discover the process model, which the 

traces belongs to – from sequences of events re-engineer the process that produced the log [5]. 

This is similar to a machine learning problem. Process model discovery algorithms get an 

event log as an input and produces a process model. The model is not restricted to a specific 

modeling language; any of the available languages can be used to graphically represent the 

process model. The most common outputs are a Petri nets, Workflow nets, BPMN, EPCs, 

BPEL. Less common is to have a declarative model as output. Many algorithms produce Petri 

net diagrams, which can be converted to any other notation [5].

In conformance checking an event log and a process model are used as inputs. The event log 

is compared against an existing process model. Each trace is replayed on the given process 

model.  The  result  is  a  report  on  the  amount  of  the  traces  aligned  with  the  model  and 

description of how other traces deviate respect to the given model [5]. 
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Model enhancement also takes an event log and an existing model as inputs, but the result is,  

in this case, a model enriched with additional data. For example, when it is possible to extract 

the cost or duration of activities, then the averages of these attributes can be added to the 

model. 

Using process mining algorithms,  one can describe the data  at  hand and also predict  the 

unseen data. So process mining is not used only on off-line data processing, but can be used 

on on-line data. With the help of machine learning, process mining can be used to support 

user to make decisions, estimate the outcome of a process case or detect deviations from a 

given process model. 

 

There  are  4  main  entities  involved  in  process  mining  (see  Figure  3):  the  process  under 

investigation; the software that supports and/or controls the process; the event logs, where the 

information about execution of activities are stored; and a process model – sometimes it exists 
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before mining and sometimes the model is generated from scratch using discovery algorithms. 

The process is a real world phenomenon in which people do their daily tasks using any tools 

to get their tasks done.

The software is usually an information system used by an organization. Such system can be 

for (but not limited to) keeping track of inventory,  doing daily bookkeeping or managing 

sales. Usually the software is implemented in a centralized way – there is a server system, 

which handles requests from client systems. The server system usually records all incoming 

requests and outgoing responses to a log file. Some systems even write the log that is ready 

for process mining without pre-processing.

The event logs, as stated before, are the main prerequisites for process mining and the quality 

of the result depends directly from the quality of the logs.
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Level Characterization

***** Highest level: the event log is of excellent quality (i.e., trustworthy and complete) and 
events are well-defined. Events are recorded in an automatic, systematic, reliable, and 
safe manner. Privacy and security considerations are addressed adequately. Moreover, 
the events recorded (and all of their attributes) have clear semantics. This implies the 
existence of one or more ontologies. Events and their attributes point to this ontology. 
Example: semantically annotated logs of BPM systems. 

**** Events are recorded automatically and in a systematic and reliable manner, i.e., logs 
are trustworthy and complete. Unlike the systems operating at level ***, notions such as 
process instance (case) and activity are supported in an explicit manner. 
Example: the events logs of traditional BPM/workflow systems. 

*** Events are recorded automatically, but no systematic approach is followed to record 
events. However, unlike logs at level , there is some level of guarantee that the events 
recorded match reality (i.e., the event log is trustworthy but not necessarily complete). 
Consider, for example, the events recorded by an ERP system. Although events need 
to be extracted from a variety of tables, the information can be assumed to be correct 
(e.g., it is safe to assume that a payment recorded by the ERP actually exists and vice 
versa). 
Examples: tables in ERP systems, events logs of CRM systems, transaction logs of 
messaging systems, event logs of high-tech systems, etc. 

** Events are recorded automatically, i.e., as a by-product of some information system. 
Coverage varies, i.e., no systematic approach is followed to decide which events are 
recorded. Moreover, it is possible to bypass the information system. Hence, events may 
be missing or not recorded properly. 
Examples: event logs of document and product management systems, error logs of 
embedded systems, worksheets of service engineers, etc. 

* Lowest level: event logs are of poor quality. Recorded events may not correspond to 
reality and events may be missing. Event logs for which events are recorded by hand 
typically have such characteristics. 
Examples:  trails  left  in  paper  documents  routed  through  the  organization  (“yellow 
notes”), paper-based medical records, etc. 

Table 1: Maturity levels for event logs [6]

In process mining, the most common log formats are MXML [17] and XES [18]. There are 

very few software solutions that produce their logs in those formats. Usually a log is a flat text 

file, where the events not always appear in the order they happened. Indeed, log recording is 

usually  implemented  in  an asynchronous  manner  –  software  sends all  log  requests  to  an 

interface and the interface decides, when to write the log entries to a file. However there are 

tools [19] [20] for converting different log formats (flat file, database table) to XES or MXML 

formats.

MXML was the first format introduced for process mining. MXML was developed mainly to 

hold simple information about the process – set of traces, where each trace has a set of events. 
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Each event is described with a fixed set of attributes. Each organization is a bit different and 

requires different set of attributes to be recorded with each event. To overcome this issue, a 

new format was proposed -XES [20]. The application developed for this thesis expects that 

the log is already converted in XES format.

The process models describe the process using abstractions. A process can be represented 

graphically using boxes and arrows; in written forms: story,  temporal logic expressions or 

regular languages; or verbally, in which case the process model is in somebody's head.

Process Mining and Business Process Management

In organizations a process has a lifecycle (see Figure 4). The lifecycle starts with a design of a 

process –someone has to come up with an idea about what has to be done to achieve a goal.  

Then, these ideas are verified and validated – analysis phase. When the steps are defined, a 

plan is introduced to participants and necessary tools are acquired – implementation phase. 

Configuration  is  mostly  necessary  to  allocate  resources  to  activities.  When  all  process 

parameters  are  confirmed,  the  process  is  executed.  In  the  execution  phase  the  process  is 

monitored  and small  adjustments  can  be  done,  which  do not  require  redesign.  When the 

process has run for some time, it goes to the diagnosis phase, where the process is analyzed 

for efficiency. The output of this phase may trigger the process to be redesigned.
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Figure 4: BPM lifecycle [6]



In the process mining manifesto [6], the authors point out that process mining can be used in 

every  phase  of  the  business  process  management  lifecycle  except  from implementation. 

However, mainly, it is used for diagnosing the process, but in other phases process mining can 

give operational support for users.

Declare

Declare is a declarative language based on LTL (see next chapter) to formally specify the 

semantics of a constraint (a declaration). A constraint is a property that is meaningful in the 

context of process modeling. Since LTL formulas can be difficult  to understand,  Declare 

associates a graphical representation to each constraint. By using this approach, the users do 

not need to have knowledge of temporal logic. Instead, they can learn the intuitive meanings 

of  names  and  graphical  representations  of  constraints.  [21] There  are  four  classes  of 

constraints  in  the  Declare  language:  existence  constraints,  relation  constraints,  negation 

constraints and choice constraints. 

Existence constraints specify how many times an activity may occur or may not occur in a 

trace. There are four types of existence constraints (see Figure 5): existenceN(A) specifies the 

minimum number of  activities  in  a  trace;  absenceN(A) specifies  the maximum number of 

activities in a trace; exactlyN(A) specifies the exact number of activities in a trace; init(A) 

specifies the activity to be the first activity in a trace.
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Figure 5: Existence templates [21]



Relation constraints (see Figure  6) define the dependency between two activities in a trace. 

The responded existence constraint specifies that if activity A is present, activity B also has to 

be present in the trace – the order of A and B does not matter, B can appear before or after A. 

The co-existence constraint specifies that the two activities must both be present in the trace. 

Again the order is not specified –co-existence(A, B) is equivalent to co-existence(B, A).

Response,  precedence  and  succession  relation  constraints  specify  also  the  order  of  two 

activities.  The  response  constraint  specifies  that  if  A is  in  the  trace,  activity  B  must  be 

eventually present in the trace, but after A. The precedence constraint specifies that if B is  

present  in  the  trace,  then  activity  A must  be  present  in  the  trace  somewhere  before  B. 

Response  and precedence seem to specify the same constraint,  but  the  difference  is,  that 

response(A, B) is also true, when there is only A in the trace. In contrast, precedence(A, B) is 

true, when only B is present in the trace. The succession constraint requires both A and B to 

be present in the trace and A must be eventually followed by B.

Alternate  and  chain  constraints  make  the  response,  precedence  and  succession  stronger. 

Alternate response requires, that after each A there must be a B (alternate response(A, B) is 

true in trace <A, C, B, B, F, A, B>, but false in <A, A, B>). The same applies to precedence 

and succession. Alternate precedence requires, that there is always A before each B. Alternate 

succession  specifies  that  for  every  A in  the  trace,  there  must  be  exactly  a  B  eventually 

following it.

Chain response specifies, that every A in thetrace has to be immediately followed by B. Chain 
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precedence specifies, that there must be an activity A immediately before B. Chain succession 

requires both A and B to be in the trace and A is immediately followed by B.

Negation  constraints  (see  Figure  7)  are  negated  versions  of  relation  constraints.  But  it  is 

important to note that the negation is not be interpreted as logical negation, For example, both 

responded existence and not responded existence can be true in the same trace.

Not responded existence constraint specifies that if activity A is present, activity B must not 

be present in the trace not before not after.  Not co-existence specifies that not responded 

existence(A, B) and not responded existence(B, A) must be true in the trace.

The not response constraint specifies that if A is in the trace, activity B must not be present in 

the trace after A. The not precedence constraint specifies that if B is present in the trace, then 

activity A must not be present in the trace before B. The not succession constraint requires 

that both not response and not precedence to be true in the trace.

Not chain response specifies, that every A in the trace must not to be immediately followed by 

B. Not chain precedence specifies, that every B must not be immediately preceded by A. Not 

Chain succession requires both not chain response and not chain precedence to be true in the 

trace.

Choice constraints (see Figure 8) specifies a) a number of activities that can follow a specific 

activity (inclusive choice) or b) only a certain activity can follow a specific activity (exclusive 

choice).

17

Figure 7: Negation templates [20]



The 1 of 2 constraint specifies that at least one of the two activities A and B has to be present  

in the trace, but both can be present and each of then can be present an arbitrary number of 

times without any order restriction. Similarly, 1 of N specifies that all the specified activities 

can be present in the trace, but at least one has to be present. 2 of 3 adds the restriction that at  

least two activities must be present in the trace.

Exclusive 1 of N choice specifies that only one of the given activities can be present in the 

trace. Exclusive 2 of 3 specifies that exactly 2 of 3 activities must be present in the trace.

Each  Declare  templates  involves  a  specific  number  of  activities:  existence(A)  has  one, 
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response(A, B) has two and  1 of 3(A, B, C) has three. Some times there is a need to assign 

multiple activities as a parameter. Template parameter is called branching, when it is assigned 

more than one activity.

Temporal Logic

Besides describing a process using graphical notations (boxes and arrows), the model can be 

constructed  using  different  types  of  expressions  or  (machine  readable)  text  formats.  For 

example  imperative  models  can  be  converted  to  Business  Process  Execution  Language 

(BPEL) [22]. BPEL is used to exchange information about processes between computers and 

configure Business Process Management systems. Declare models can be also converted to 

similar  formats,  for  example,  they  can  be  also  represented  by  a  set  of  temporal  logic 

expressions.

Temporal Logic is a type of modal logic with modalities referring to time – truth value of the  

expressions varies over the time. Temporal logic adds two binary operators and five unary 

operators  to  propositional  logic.  The  binary  operators  are  until  and  release,  the  unary 

operators are next, future, globally, all and exists. In a temporal logic formula we can then 

express statements like "I am always hungry", "I will eventually be hungry", or "I will be 

hungry until I eat something”. 

Linear Temporal Logic (LTL) [23] was first proposed by Amir Pnueli in 1977. In 1981, E. M. 

Clarke and E. A. Emerson defined Computational Tree Logic (CTL) [24]. LTL considers time 

to be linear - “I will eventually be hungry”, whereas CTL allows branching of time - “It is 

possible that I will eventually be hungry” or “This is always the case, I will eventually be 

hungry”. Each branch in time can be viewed as a possible path of events and the future is not 

determined. These logics where developed independently until 1986, when E. A. Emerson and 

Joseph Y. Halpern defined CTL* [25] to combine both LTL and CTL. 

The  syntax  of  LTL is  built  up  from  constants  true  and false,  a  finite  set  of  atomic 

propositions, the logical operators ¬, , , →, ↔, and the temporal modal operators ∨ ∧ X (next), 

F (finally or eventually),  G (globally or  always)  and U  (until).  Formally,  the set  of LTL 

formulas over set of atomic propositions AP is inductively defined as follows:

• true and false are LTL formulas;
• if p  ∈ AP then p is a LTL formula; 
• if ψ and φ are LTL formulas then ¬ψ, φ  ψ, φ  ψ, φ → ψ, φ ↔ ψ, ∨ ∧ X ψ, F ψ, G ψ, 
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and φ U ψ are LTL formulas.

Consider the following traces in an event log: 

An event log

OrderGoods → ReceiveInvoice → PayInvoice → ReceiveGoods → RecordTransaction; 

OrderGoods → ReceiveInvoice → RejectInvoice → RecordTransaction; 

OrderGoods → ReceiveInvoice → PayInvoice → RejectGoods → RecordTransaction;

Table 2: Example of an fictional event log

 

It is said that an LTL (check everywhere AN LTL) formula holds in a log, when it is true in all 

initial states.

The  following  LTL formulas  are  true  on  all  the  above  mentioned  traces  (AP  is  the  set 

{OrderGoods,  ReceiveInvoice,  PayInvoice,  ReceiveGoods,  RejectGoods, 

RecordTransaction}): 

X(ReceiveInvoice) - “The invoice is received next after initial event” 

F(RecordTransaction) - “The transaction is eventually recorded” 

G(OrderGoods  → F(RecordTransaction)) -  “After  ordering  goods  a  transaction  is 

recorded”. 

The syntax of CTL is similar to LTL, but CTL introduces path quantifiers  E (exists a path) 

and A (in all paths). Formally, the set of CTL formulas over a set of atomic propositions AP is 

inductively defined as follows:

• true and false are CTL formulas;
• if p  ∈ AP then p is a CTL formula; 
• if ψ and φ are CTL formulas then ¬ψ, φ  ψ, φ  ψ, φ → ψ, φ ↔ ψ, ∨ ∧ EX ψ, EF ψ, EG 

ψ, E[φ U ψ], AX ψ, AF ψ, AG ψ, A[φ U ψ]  are CTL formulas.

In most cases, appending an LTL formula with the quantifier A will turn the LTL expression 

to the CTL equivalent.

AX(ReceiveInvoice) - “Always an invoice is received next after initial event” 

AF(RecordTransaction) -  “It  is  always  the  case  that  a  transaction  is  eventually 

recorded” 
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AG(OrderGoods → F(RecordTransaction)) - “It is always the case, that after ordering 

goods a transaction is recorded”. This is smilar to previous statement, but stronger.

But CTL does not supersede LTL, for example  FGp is a formula in LTL, but there is no 

equivalent in CTL [24].

Temporal logic is used in model verification in hardware design phase where a hardware 

designer needs to test the developed model against the specification using model checking 

with formal methods [26]. The main driver in model checking is that it is much less expensive 

to get the design right before starting the implementation phase. There are several examples of 

bugs  [27] that  cost  a  lot  to  the  vendor.  To  minimize  such  risks,  many  companies  have 

implemented formal verification methods, to check the correctness of a design or an algorithm 

before the implementation phase.

Declarative process models have several things in common with formal verification methods: 

there is a model, properties and execution paths of the model. Formal verification methods 

start with a modeled system and properties describing the system. The task is to automatically 

prove that a property holds in the system. Declarative process models are described with a set 

of  properties,  which  are  called  constraints  (in  many  cases  property  and  constraint  are 

synonyms)  and  the  system  is  allowed  only  to  execute  such  paths,  which  satisfy  the 

constraints. 

Each execution of a process path produces one trace in a log. Given a set of logged execution 

paths,  the  task  of  finding  the  constraints  of  the  (declarative)  model,  which  could  have 

produced the traces is called (declarative) process discovery.

The basis  of the approach used in this  thesis  to  discover the process model  is  to build a 

transition system from an event  log and implement  an algorithm to check temporal  logic 

expressions against the transition system.

Model Checking and Query Checking

In context of model checking, a transition system represents the real system as a set of states, 

the transition relation between the states and a set of variables that hold the information about 

the states. Each state can have zero or more incoming transitions from other states and can 

have zero or more transitions going out from the state. This is similar to what happens in 

activity diagrams that represent a process, where the process is the real system, the transition 
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system is the process model and an activity is a state. 

Model checking requires a more specific type of transition system. There is one criterion: 

every  state  must  have  at  least  one  outgoing  transition.  This  enables  to  generate  infinite 

execution paths – this is needed because temporal logic can represent only infinite traces. To 

get such model from process model,  which has finite paths, it is enough to add an artificial 

transition from the final state to itself – a self loop. [26].

The transition system in model checking context is always represented by a Kripke structure 

named  after  Saul  Kripke,  who  proposed  the  idea.  A Kripke  structure  is  a  variation  of 

nondeterministic automaton [28] and is defined as a tuple M=(A ,S , I , R , L) . Where: 

• A is the set of atomic propositions used in the system, e.g., {A, B, C, D} in Figure 13

• S  is the set of all states, e.g., {state_1, state_2, state_3, state_4, state_5, state_6}
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Figure 10: A simple transition system with 6 states, 6 transition relations and 4 variables

Figure 11: Simple Kripke structure



• I  is the set of initial states s.t. I⊆S , e.g., {state_1}

• R  is the set of all transition relations in the system s.t.  R⊆S×S  , e.g., ({(state_1, 

state_2),  (state_1,  state_3),  (state_2,  state_4),  (state_3,  state_5),  (state_4,  state_6), 

(state_5, state_6), (state_6, state_6)}. 

• L  the labeling function that maps each state onto the propositional variables which 

hold in it, e.g., {A → {state_1}, B → {state_2, state_5}, C → {state_3, state_4}, D → 

{state_6})}.

For convenience the transition relations are left unlabeled and only those relations that have 

value “true” are shown. 

For example, in case of hardware design the system can have more than one proposition set to 

true at the same time. To continue with the analogy with activity diagrams, when the process 

is in a particular state,  then only one activity can be enabled. In this  thesis an activity is  

presented as an atomic proposition.

The input for model checking is  a Kripke structure and a specification,  expressing which 

properties  must  hold in  the system. For  the model  checking process to be automatic,  the 

properties must be formally described. The properties can be also viewed as questions about 

the system (see Table 2)

1. „Is OrderGoods always followed by RecordTransaction?“, 

2. „Is the next activity after ReceiveInvoice PayInvoice or RejectInvoice?“, 
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3. „Do all processes start with OrderGoods immediatelly followed by ReceiveInvoice?“. 

There are several ways to define the properties, but often a temporal logic expression is used. 

For example, the questions above can be expressed using LTL as:

Q1. G(OrderGoods -> F(RecordTransaction)) 

Q2. G(ReceiveInvoice -> X(PayInvoice V RejectInvoice) 

Q3. OrderGoods -> X(ReceiveInvoice) 

A Temporal Logic Query is a temporal logic expression with placeholders and the task is to 

find the solutions to the placeholders. A solution to the query is any propositional formula 

such that, when substituting the placeholder with it, it yields to a temporal logic expression 

that is satisfied in the model. Usually there are more than one solution to a query. 

Temporal logic query checking (or query checking for short) was proposed by William Chan 

[29] to speed up design understanding by discovering properties not known beforehand. In his 

work he used only one placeholder and presented it with a question mark (?). In this work, he 

used CTL. For example, querying all activities immediately following ReceiveInvoice can be 

written  as  AG(ReceiveInvoice  ->  AX(?)).  The  solutions  to  the  query  is  {PayInvoice, 

RejectInvoice,  PayInvoice  \/  RejectInvoice}  (see  Table  2).  Since  PayInvoice  and 

RejectInvoice can be derived from PayInvoice \/ RejectInvoice, the first two solutions can be 

derived from the last one. The last solution is also called the strongest solution for the query.

The thesis  is about defining and implementing the task of running temporal logic queries 

against an event log and getting back a set of LTL constraints that describe the process at 

hand. 
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Solution
The solution for query checking proposed by Chan [29] is to directly substitute all possible 

propositional  formulas  to  the  placeholders  and check the  resulting  expression  against  the 

model. The main problem with this approach is the scalability, when the model contains k 

atomic propositions, then there are 22
k

 substitutions needed. 

To mitigate  the issue,  Bruns and Godefroid  [30] provide a  mechanism for  computing all 

solutions to arbitrary queries with a single placeholder, occurring either in a negative ( ¬?x ) 

or a positive position ( ?x ) in the query, using extended alternating automata (EAA)  [31]. 

Hornus and Schnoebelen  [32] generalize the problem further to make no such restriction to 

the temporal logic queries. They introduce an algorithm to efficiently produce some of the 

maximally  strong  solutions  for  positive  queries  with  a  single  placeholder.  The  negative 

queries can be turned to positive queries and the solutions again turn back. Their algorithm 

computes one solution to the query using a linear number of calls to the model checker, two 

solutions using a quadratic number of calls to the model checker, etc.

In xChek [13] query checking is implemented on top of multi-valued (see Figure 15) model 

checking. The model checking discussed so far uses Boolean logic as algebra – the atomic 

proposition in the model and in the temporal logic expressions take their value from the set 

{true, false}. Boolean logic can also be referred to as 2-valued logic. In multi-valued logic, 

the algebra is any De Morgan algebra, which can be represented by a finite distributive lattice. 

The values for the atomic propositions are taken from the set of all lattice elements and the 

logic  operators  “and”  and  “or”  are  defined  through  lattice  operations  meet  and  join 

respectively. Negation is a function, which preserves involution (  f ( f (x ))= x , in classical 

logic, negation operator preserves involution ¬¬x=x ).
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For query checking, the propositions in the model and in the expression are two valued, but 

they allow the lattice elements to appear as constants in CTL expressions. The lattice used is 

an upset lattice, which is constructed from the set of all  propositional formulas of atomic 

propositions used by the system. For query checking, the placeholders have to be substituted 

only  with  values  in  the  set  of  all  join-irreducible  elements  of  the  upset  lattice.  The 

intermediate  solution  is  all  join-irreducible  elements,  which  hold in  the  model.  The final 

solution is constructed by combining the join-irreducible elements. More information can be 

found in [13] [30].

All the components and algorithms were already available to implement this approach. There 

is an application to convert event log to transition system [33] and another application to run 

temporal logic queries against that system [13]. The output can be used to manually sketch the 

model or format it in a way it could be used as an input to a modeling software. There are 

many drawbacks of this approach, the task is tedious, error prone and takes lot of time to 

complete on cycle.

The first idea to implement the query checking solution for process mining was to implement 

a  simple facade on top of xChek.  The input  for  the facade is  an event  log and a  list  of  

temporal logic queries and the output is a list of LTL constraints which hold on the traces of 

the log.  xChek is a GUI based desktop application written in Java. It  is a tool for model  

checking  and  exploration.  It  also  supports  fairness1 as  input  and  can  generate  counter 

1 Fairness is a concept of filtering out a subset of states that are not considered during model checking
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examples.  In  theory it  should  also  support  witness2 generation,  but  this  seems not  to  be 

implemented.

xChek is developed for "true" model checking, where all possible solutions to a query are 

produced. In the context of business process management, the expectation for a solution is a 

bit less strict and mostly it is sufficient to get a list of single events as solution for the query. 

As output xChek produces all possible propositional formulas that can be substituted with the 

placeholders in the input query. For example, when the minimal solution to the query is (a  b∨  

 ¬c) then the solutions to the query are also {a, b, ¬c, a  b, a  ¬c, b  ¬c}. In Declare, a∨ ∨ ∨ ∨  

solution  with  two  or  more  atomic  propositions3 joined  by  a  disjunction  is  a  branched 

constraint. When the amount of atomic propositions and the log size grows, the xChek output 

will contain several solutions to the query, which all are valid, but may not be interesting to 

the user.

To resolve this, the facade also takes an additional input, a configuration parameter, which 

indicates, how many branches the user expects at most. 0 for single events only, 1 for choice 

between two events, etc. Before converting xChek result to LTL formulas, the facade post 

processes the result to filter out solutions, which has a greater number of branches than the 

one specified by the user.

xChek takes the model as an input in SMV [34], GClang  [35] or XML [36] format. xChek 

does not support the construction of a transition system from an event log. Therefore, the first  

task for the facade is to read in the log file and convert it to a model description of supported 

format and initialize xChek. Next a list of temporal queries are taken from a file and for each 

query a call to xChek is made. The output is post-processed and returned to the user.

The solution worked fine, until it was tested against real life logs -even for a simple query,  

xChek took hours to compute the solution on quad core CPU at 2GHz with 8GB of memory.  

Before discarding completely the idea to use xChek, an attempt to modify the xChek source 

code was made. Because of the complexity of the code and failure to get contact with the 

developer, it  was decided to start implementing a symbolic model checking package from 

scratch.

Indeed, the original implementation of xChek makes it a very general framework, in the sense 

2 A path in the model, where a CTL expression holds.
3 An event in a process is represented as an atomic proposition – for each event class in the log, there is one 

atomic proposition in constructed Kripke structure. 
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that it uses multi-terminal decision diagrams (MDD) -the terminal nodes of the diagram, can 

take their values from an arbitrary set. This is  needed to construct functions which are used to 

reason  about  uncertainty  in  a  model  or  even  more  complex  situations  in  hardware  (or 

software) design verification phase. The uncertainty is defined as a third value added to the 

boolean values: true, false, unknown. For example, a value of an atomic proposition may be 

unknown  in  some  states  or  the  state  does  not  depend  on  the  value  at  all.  The  second 

generalization comes from the fact that the decision diagrams has to be multi-terminated. To 

support  that  they  need  other  algebras,  beside  the  classical  one.  Because  of  these 

generalizations  the  source  code  is  very  complex  and  maybe  has  also  impact  on  the 

performance. 

Implementation

Model checking is a graph traversal problem, where the graph is a  Kripke structure. Recall 

that the Kripke structure consists of set of states, a set of relations and a labeling function, 

which maps an atomic proposition to the set of states, where the atomic proposition is true. In 

model checking, it is important to be able to calculate predecessors of a given set on states 

and perform set operations in the state space. Both requirements can be implemented using 

boolean functions. A boolean function is f :B k→B , where B={0,1} . 

Model checking is called symbolic, when the model is represented using boolean functions. 

To  represent  a  Kripke  structure  using  boolean  functions,  there  has  to  be  a  function  for 

transition relations and one function for each atomic proposition, which represent the set of 

states  in  which  the  atomic  proposition  is  true.  We  write  the  symbolic  model  as 

〈 f R , f L( x0 )
, ... , f L(xn)

〉 , where R  is the set of transition relation, L  is the labeling function and 

xi (i  ℕ)is an atomic proposition.

For example, the transition system in Figure 16 has following properties:

R={(1, 2) ,(1, 5) ,(1,6) ,(1,8) ,(2,3) ,(3, 4) ,(4,4) ,(5,3) ,(6,7) ,(7, 4) ,(8,9) ,(9,10) ,(10,10)}

L={A→ {1}, B→ {2,6,9},C→ {3,5}, D→ {4}, E→ {7,8}}  

and is symbolically represented by 〈 f R , f L( A ) , f L(B ) , f L(C ), f L(D ) , f L(E)〉 .  

The boolean functions represent a set of states and set of pair of states, where each state is  

represented by a boolean function. To represent 10 states using boolean functions, we need at 
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least  4  binary  variables  ( ⌈ log2(10)⌉=4 ).  State  1  is  represented  by  a  function 

f (x1, x2, x3, x4)=¬x1∧¬x 2∧¬x3∧ x4  or  f 1( x̂)= x̄1 x̄2 x̄3 x4  for short.  State  2 is  a function 

f 2( x̂ )= x̄1 x̄2 x3 x̄ 4 , etc. Now to encode the set of states, it is just the matter of “joining” the 

encoded  states,  so  f L(A)= f 1 ,  f L(B)= f 2∨ f 6∨ f 9 ,  f L(C )= f 3∨ f 5 ,  f L(D )= f 4  and 

f L(E )= f 7∨ f 8 . 

To encode transition relations, it is needed to encode the source state and the destination state 

differently. For the source state the existing state encodings are used, but for destination states 

additional  4  bits  are  needed  -  x̂ ' .  The  destination  state  2  is  encoded  as 

f ' 2( x̂ ' )= x̄ ' 1 x̄ ' 2 x ' 3 x̄ ' 4  and  the  transition  (1,  2)  is  f 1,2= f 1∧ f ' 2 .  Other  transitions  are 

encoded  similarly.  The  set  of  all  transitions  B→  is  then 

f →= f 1,2∨ f 1,5∨ f 1,5∨ f 1,8∨ f 2,3∨ f 3,4∨ f 4,4∨ f 5,3∨ f 6,7∨ f 7,4∨ f 8,9∨ f 9,10∨ f 10,10 .

A boolean function can be represented as a full and complete binary decision tree [37], where 

leaves are terminal nodes (labeled with 0 or 1) that represents the value of the function on a 
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<a, e, b, c>



given input – this is the same as the value in the truth table.

The problem of using Binary Decision Tree is that the number of nodes is exponential with 

respect of the number of variables in the function. The number of terminal nodes is equal to 2 

to the power of the number of the variables in a function. A function with 8 variables has 256 

terminal nodes and 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 511 nodes in total. Fortunately 

the Binary Decision Tree can be reduced to  a Binary Decision Diagram, which does not 

depend directly on the number of input variables. The first reduction rule is to merge the 

terminal nodes so that there are only two of them, one for 0 and one for 1. Next all subgraphs 

are removed, which do not affect the outcome.

Using reduction rules, a Binary Decision Tree can be reduced to Binary Decision Diagrams 

(BDD) [38] In general a Binary Decision Diagram is a directed acyclic graph that is used to 

represent a boolean function. Non-leaf nodes or non-terminal nodes are labeled with variable 

names. Each non-terminal node has two outgoing arcs labeled with 0 and 1. To evaluate a 

function on a given input, the graph is traversed starting from the root to a terminal node. In 

each non-terminal node the next transition is chosen according to the input value of a variable 

labeling the node. When the terminal node is reached, then the value of the node is returned.  

BDD is efficient data structure to evaluate boolean functions [38]. 
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f (x1, x2, x3)= x̄1 x̄2 x̄3+ x1 x2+ x2 x3  [38]



The implementation is written in ANSI C. The reasons for selecting C over other languages 

was that the selected BDD library BuDDy [39] is implemented in C. 

We start by converting a XES log file to a transition system. The main goal for producing the 

transition system is to keep the number of states as low as possible. This means to reuse the 

transitions which do not affect the outcome. In case of traces <a, b, c, d>, <a, b, c, d> <a, c, c, 

d>, <a, b, e, d>, <a, e, b, c> the resulting system will have  10 states (see Figure 16). 

After the log is parsed to a transition system, it will be flattened to a set of transitions and a 

map from atomic proposition to set of states the proposition holds.

The next step is to parse the second input for CTL expressions. The expressions are given in a 

text file separated by semicolon (;) or new line. The CTL expression is converted to a tree 

structure where unary operations have single child, binary operators have two children and 

atomic proposition, constant value and placeholders are the leave nodes.

For  example  a  Declare  response(A,  B)  constraint  is  represented  by  a  CTL expression 

EG (A→EF (B)) ,  see Figure x for the tree after parsing the expression.
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Third  step  is  the  model  checking.  Currently the  implementation  is  direct:  every different 

placeholder is assigned value from the set  A (all  atomic propositions in the system or all  

events in the process). When there are 20 events and 3 placeholders, there will be about 203 

calls  to the model checking. The number is  a bit  lower,  since the current implementation 

exploits  the  fact  that  it  is  not  interesting  to  assign  same  atomic  proposition  to  different 

placeholders. In case E[?x U ?y], we are not interested in to evaluating E[e U e], i.e., there 

exist a trace, where all activities are e before activity e starts, which is exactly the same as 

EG(e).

A CTL expression  is  evaluated  against  the  transition  system  from  inside  out.  Take,  for 

example, the expression !EG(a → EX(b)). First the result for “b” is evaluated, then “EX”, 

“a”, “→”, “EG” and finally “!”. The support is calculated so that all initial states form the 

resulting set are counted. The support is the count of initial states in which the formula holds 

(is true) divided by the total number of initial states.

The output is a list of constraints which hold in the model, with support. For example a single 

query EX(?x) on model in Figure 16, the output is:

0.00 X(A)

0.50 X(B)

0.25 X(C)
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0.25 X(D)

0.00 X(E)

The result of an atomic proposition is the set of states, where the atomic proposition holds. In 

Figure 16 all states where B  s true are: 2, 6, 9. This is the same as L(B) .

The result of negation operator is the complement of set, where formula φ holds.

The results of conjunction and disjunction of formulas φ and ψ are the intersection and union 

of sets where φ holds and ψ holds respectively.

Implication (φ → ψ ) and equivalence (φ ↔ ψ ) are represented by (! φ  ψ) and ∨

((! φ  ψ)  (φ  !ψ)) respectively.∨ ∧ ∨

To evaluate temporal operators a helper function preExists(φ) is needed to calculate and return 

all predecessors for a set of states.

EX(φ) returns the set of states where φ holds plus all predecessors of the states -          

EX(φ)  = φ  preExists(φ) ∨

The evaluation of EG(φ) starts by first finding the set of states where φ is true and appends all 

predecessors of these states. Next again all predecessors of the predecessors are appended. 

The algorithm returns, when there are no predecessors to append.

The evaluation of EF(φ) is done using equivalent expression E[true U φ]. 

The evaluation of  E[φ  U ψ] starts  with the set  of states where ψ is  true and appends all 

predecessors of the set, where φ is true. Next again all predecessors the predecessors where φ 

is true are appended. The algorithm returns, when there are no predecessors to append.
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Evaluation
To evaluate  the  implementation,  its  performances  are  measured  with  respect  to  log  size, 

number of activities, number of events in a trace, number of placeholders in a CTL query and 

complexity of the CTL query. The results are compared against dedicated Declare constraint 

mining applications: MINERful  [11] and Declare Maps Miner  [10]. Also we provide some 

results of the first solution described in this thesis using xChek. The tests were executed in 

Windows 7 operating system on Intel Core i7 CPU and 8GB of memory.

There are  three sets  of logs:  a  set  with variable  number of traces (with fixed number of 

activities and fixed number of events in a trace.),  a set with variable number of activities 

(with a  fixed  number  of  traces  and fixed number  of  activities  in  a  trace)  and a  set  with 

variable number of events in a trace (with a fixed number of traces and fixed number of 

activities).

Test set Traces Activities Activities in a trace

Variable number of traces 400 - 4000 10 10

Variable number of activities 100 5 - 50 10

Variable number of activities in a trace 100 10 5 - 50

Table 3: Properties of test sets

There  are  10  different  configurations  of  log  files  in  each  set  and  each  configuration  is 

generated 3 times, so there are 30 log files in each set. All test logs where started after one 

after another. The test runner started the application with a log file. The application checked a 

predefined set  of queries against  the log (see Table  4).  The time was measured from the 

beginning of query checking – not including the time for log parsing and constructiong of 

Kripke structure. The test runner waited until the application was finished and shutdown; and 

started next run with next log file. The set of queries is based on the list of Declare constraints 

supported by the MINERful algorithm [11]. 
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Declare constraint CTL query

Init(?x) ?x

Existence(?x) EF ?x

Absence2(?x) !(EF(?x & EX(EF?x)))

CoExistence(?x, ?y) (EF?x) <-> (EF?y)

RespondedExistence(?x, ?y) EF(?x) -> (EF?y)

Response(?x, ?y) EG(?x -> EF?y)

Precedence(?x, ?y) (E[!(?y) U ?x]) | !(EG?y)

Succession(?x, ?y) (EG(?x -> EF?y)) & ((E[!(?y) U ?x]) | !(EG?y))

AlternateResponse(?x, ?y) EG(?x -> EX(E[!(?x) U ?y]))

AlternatePrecedence(?x, ?y) ((E[!(?y) U ?x]) | !(EG?y)) & (EG(?y -> EX((E[!(?y) U ?x]) | !
(EG?y))))

AlternateSuccession(?x, ?y) (EG(?x -> EX(E[!(?x) U ?y]))) & (((E[!(?y) U ?x]) | !(EG?y)) & 
(EG(?y -> EX((E[!(?y) U ?x]) | !(EG?y)))))

ChainResponse(?x, ?y) EG(?x -> EX(?y))

ChainPrecedence(?x, ?y) EG(EX(?y) -> ?x)

ChainSuccession(?x, ?y) EG(?x <-> EX(?y))

NotCoExistence(?x, ?y) !(EF?x & EF?y)

NotSuccession(?x, ?y) EG(?x -> !(EF?y))

NotChainSuccession(?x, ?y) EG(?x -> EX(!(?y)))

Table 4: Queries used for performance testing

The first test (see Chart 1 and 2) used a set of synthetic event logs, where each log file has the 

number of traces and number of events in a trace fixed,  and the size of the log alphabet  

(number of activities) changes. 
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The second test (see Charts 3 and 4) used a set of synthetic event logs, where each log file has 

the number of events in a trace and the size of the alphabet fixed, and the number of traces 

changes.
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Chart 3: Performance test using variable number of traces
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Chart 4: The trend of number of states in transition model respect to the growth in the 
number of traces
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The third test (see Charts 5 and 6) used a set of synthetic event logs, where each log file has  

the number of traces and the size of the alphabet fixed, and the number of events in a trace 

changes. 

All experiments display linear trend respect to the growth in the log and logarithmic growth in 

the size of the Kripke structure. 
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Chart 5: Performance test using variable number of events in each trace
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Chart 6: The trend of number of states in transition model respect to the growth in the 
number of events in each trace
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Fourth test was made to measure the performance of different queries. Chart 7 clearly shows 

that the most expensive query (in terms of time) is E[?x U ?y]. The second one is EF(?x) that 

is evaluated as E[true U ?x].
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Chart 7: Running time of different queries in a log with 4000 traces, 
10 event classes and 10 events in each trace
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The benchmark reveals that when discovering the same set of constraints using the existing 

approaches with respect  to the one presented in this thesis, the time difference is significant. 

For a log with 4000 traces, 10 event classes and 10 events in each trace, the discovery task 

requires 5.3 seconds  with the Declare Maps Miner and 1 second for MINERful to complete 

the task, while our software requires 86 seconds. From this it is safe to conclude that the 

approach  presented  in  this  thesis  do  not  improve  the  performance  of  mining  Declare 

constraints with respect to existing solutions. 

In addition, there is a clear performance improvement with respect to xChek: the tests with 

xChek, showed extremely low performance or even run out of memory. 
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Case Study
For the case study it was decided to take a real life event log that was given as the source log 

for the Business Process Intelligence Challenge (BPIC) 2012. BPIC is an event founded by 

the Eindhoven University of Technology. The main goal of the event is to promote process 

mining.  The organizers  provide a  real  life  log file  with sensitive information removed or 

obfuscated. The log file is freely available. The aim for the participants is to describe the 

process to which the log belongs to. There are no guidelines nor restrictions on how to process 

the data and what to write into the report. It is up to the participant to select the tools and 

methods. 

The case study has been conducted based on the report of a winning entry [40]. The aim is to 

confirm or invalidate the results provided in the report using temporal logic query checking.

The event log is recorded by the software system for managing loan applications in a bank.  

The log contains 13 087 process instances spanning over approximately a six months period 

from October 2011 to March 2012. There are in total of 262,200 events in 23 activities. Each 

trace contains  a single trace level  attribute,  AMOUNT_REQ, which indicates the amount 

requested by the applicant. The initial event for all traces is a submission of an application 

(A_SUBMITTED) and each case ends with a decision: approved, canceled, declined.

There are three categories of activities. which are prefixed in the log eith A_, O_ and W_. 

Events starting with A_ refer to the state of the application in the process [40].

Event class Description

A_SUBMITTED Initial application submission

A_PARTLYSUBMITTED Pseudo activity. This happens always right after (within seconds)  
A_SUBMITTED.

A_PREACCEPTED Application is preaccepted, but needs additional inforamtion

A_ACCEPTED Application accepted

A_FINALIZED Application finalized 

A_APPROVED End state of successful (approved) applications

A_REGISTERED End state of successful (approved) applications

A_ACTIVATED End state of successful (approved) applications

A_CANCELLED End state of unsuccessful applications

A_DECLINED End state of unsuccessful applications

41



Events starting with O_ refer to the state of the offer from bank to the customer.

Event class Description

O_SELECTED Applicant selected to receive offer

O_PREPARED Offer prepared 

O_SENT Offer sent to applicant

O_SENT BACK Offer response received from applicant

O_ACCEPTED End state of successful offers

O_CANCELLED End state of unsuccessful offers

O_DECLINED End state of unsuccessful offers

Events with prefix W_ indicates the work, which is done by the clerks in the bank 

Event class Description

W_Afhandelen leads Follow up incomplete submission

W_Completeren aanvraag Completing pre-accepted application

W_Nabellen offertes Follow up after offer is sent

W_Valideren aanvraag Validating the application

W_Nabellen incomplete dossiers Querying additional information

W_Beoordelen fraude Investigating potential fraud 

W_Wijzigen contractgegevens Modifying approved contracts

Each event is of type Schedule, Start and Complete and a timestamp.

Event type Description

SCHEDULE Indicates a work item has been scheduled to occur in the future

START Indicates the commencement of a work item

COMPLETE Indicates the closing / conclusion of a work item

The  authors  in  [40] used  three  software  tools  to  conduct  their  analysis:  Disco 

(http://fluxicon.com/disco/),  Microsoft  Excel  (http://office.microsoft.com/en-us/excel/)  and 

CART (http://www.salford-systems.com/products/cart).

In the report they state that A_SUBMITTED is always the initial state and is immediately 

followed by A_PARTLYSUBMITED. To verify this the queries ?x and EX(?x) must return 

A_SUBMITTED and EX(A_PARTLYSUBMITTED) with support  of 100%. After running 
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the queries, indeed the result was as expected.

Temporal logic query checking can be used to ask questions about the process. For example 

querying invariants in the process – a constraint with support of 100% or what activity is 

always done before A_ACTIVATED. CTL queries for these questions are !(AF(?x) & AF(?y)) 

(see results  in Table  5) and  AG(?x →  AF(A_ACTIVATED)). The latter  did not give any 

results, so EG(?x → EF(A_ACTIVATED)) was queried instead (see results in Table 6).

Activity A Activity B

A-CANCELLED#complete A_APPROVED#complete

A-CANCELLED#complete A_ACTIVATED#complete

A-CANCELLED#complete O_DECLINED#complete

A-CANCELLED#complete A_DECLINED#complete

A-CANCELLED#complete A_REGISTERED#complete

A-CANCELLED#complete W_Wijzigen contractgegevens#schedule

O_DECLINED#complete O_ACCEPTED#complete

O_DECLINED#complete A_REGISTERED#complete

O_DECLINED#complete A_APPROVED#complete

O_DECLINED#complete A_ACTIVATED#complete

A_DECLINED#complete A_REGISTERED#complete

A_DECLINED#complete W_Wijzigen contractgegevens#schedule

A_DECLINED#complete A_ACTIVATED#complete

A_DECLINED#complete A_APPROVED#complete

Table 5: Events which never occur together in same trace
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Support LTL expression

0.97 G(O_ACCEPTED#complete -> F(A_ACTIVATED#complete))

0.97 G(W_Nabellen incomplete dossiers#schedule -> F(A_ACTIVATED#complete))

0.97 G(W_Nabellen incomplete dossiers#start -> F(A_ACTIVATED#complete))

0.95 G(A_APPROVED#complete -> F(A_ACTIVATED#complete))

0.95 G(W_Nabellen incomplete dossiers#complete -> F(A_ACTIVATED#complete))

Table 6: Some results for AG(?x → AF(A_ACTIVATED))
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Related work 
There is a lot of work done to discover conventional process models (BPMN, EPC, workflow 

nets)  from event  logs  compared  with  the  work  done  in  the  context  of  the  discovery  of 

declarative models. In [5] Wil van der Aalst describes the state of the art of process mining, 

but  it  concentrates  mostly  on  process  mining  techniques  based  on  imperative  modeling 

languages. There is an extensive overview in [41] for the declarative approaches in general. 

Pesic  describes  in  her  thesis  [21] the need to  use  constraint  based languages  in  business 

process management and introduces the Declare language.

One of the first approaches of discovering declarative model form event logs is described in 

[42]. The authors recognize the need of declarative models to deal with flexible processes in 

an organization. They use Inductive Logic Programming techniques to learn SCIFF (Social 

Constrained IFF) rules from event log. The final output is a declarative process model, where 

the SCIFF rules are mapped to Declare constraints. SCIFF provides a declarative language 

based  on  Computational  Logic,  where  constraints  are  imposed  on  activities  in  terms  of 

reactive rules. In SCIFF, an event happened at a particular time, is denoted as H(event, T), 

where event is a term and T is the variable for time (continuous or discrete). H(Check-in, 0) 

would mean, that a person was checked in to a hotel at time 0. Another concept in SCIFF is  

expectation  –  E(event,  T)  that  means,  that  an  event  is  expected  to  happen  at  time  T. 

H(Check-in, 0) -> E(Check-out, 48), can be read „When a person is checked in, he/she is 

expected to check out after 2 days, if the time is expressed in hours.

SCIFF  rules  were  developed  to  specify  and  verify  interaction  protocols  in  multi-agent 

systems. But these can be also used to define process rules in business process management 

software and in service oriented architectures –rules for orchestrating activities. SCIFF rules 

are also used in [12], [43] and [44] to discover process models. The drawback here is that they 

need also negative traces in the log file and the traces must be labeled as positive or negative 

beforehand. 

In  [12], the authors implement a software package DecMiner to show the applicability of 

SCIFF rules in process mining. [43] uses the work in [42] to extract integrity constraints from 

an event log. Then, the learned constraints are translated into Markov Logic [45] formulas and 

the weights of each formula are tuned using the Alchemy system4. The resulting theory allows 

4 http://alchemy.cs.washington.edu/
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for conducting probabilistic classification of traces.

In  [44], the authors also uses  [42] as a starting point. They introduce Incremental Process 

Miner that can incrementally update an existing process model, given a new set of traces. The 

benefit is to modify an existing model instead of building the model to incorporate new traces.

[46] and [47] discover process models using Declare templates. They use LTL expressions to 

define the Declare templates. In  [46] the authors propose an algorithm that first generates 

candidate constraints from event log. Next, the candidates are evaluated against the event log 

–checked for conformance. A candidate constraint is considered in the final result, when it 

holds with respect to the event log. The application also takes a user defined set of constraints 

as  an  input,  this  allows  the  user  to  evaluate  one  or  several  constraints  at  the  time.  The 

approach in [47] enhances the algorithm in [46] by selecting the most interesting candidates 

using metrics similar to the ones used for association rule mining.

In [48], the authors represent the constraints in a process using a regular language [49] that 

can be expressed using regular expressions. They choose regular expressions over temporal 

logic, because temporal logic is evaluated on infinite paths, while regular expressions can 

represent finite path.

The authors describe an algorithm named MINERful [11], which is the basis of MailOfMine 

software package. By artful process they mean a process, which is not defined in detail or not 

defined at all. The transitions from one activity to another are decided during the execution. 

For example planning and scheduling a seminar event. The process depends a lot about the 

duration and the general topic of the seminar. The authors try to mine workflow models out of  

a  collection  of  email  messages.  Their  main  goal  is  to  capture  the  business  process  of 

knowledge workers, who do not follow a strict process plan and for processes for which there 

is no documentation. Using their technique, the process model can be mined from peoples 

email conversations. 
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Conclusion
The practical part of this thesis is a tool for Temporal Logic Query Checking. With this tool, it 

is possibility to discover all possible constraints that can be represented by temporal logic 

expression. The answer to RQ1 (Can Temporal Logic Query Checking improve the discovery 

of declarative process models  from event  logs?) is  yes,  improvement  in speed was made 

respect to [13] and improvement in wider range of discoverable constraints was made respect 

to [10] and [11].  Answering RQ2 (Does the tool have a business value?) is a bit more difficult 

– the improvement in speed is still not comparable to [10] and [11], but surly there is a place 

for a such tool.

The  future  work  is  to  conduct  more  thorough  performance  tests.  The  application  is  not 

handling big log files well – in the evaluation all trends respect to log growth in log size are 

liner, but at some point the algorithm starts to slow down. Also the algorithm for EU can be 

made faster.
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Appendix

I. Source code

Find source code and synthetic log files for the application at https://github.com/r2im/pickaxe.
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