UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Dmitri TimaSjov
Fast map interface with large number of vector

objects

Bachelor’s thesis

Supervisor: Vambola Leping

External supervisor: Toivo Vajakas

Author: ..o, 7.7 May 2013
SUPETVISOT: .eviieieeiieiiiiiiiiiiiiiie e 7.7 May 2013
SUPETVISOT: .eviieieeiieiiiiiiiiiiiiiie e 7.7 May 2013

Professor:cooooiiiiiiiiii 7.7 May 2013

TARTU 2013

Table of Contents

Chapter 1. INtroduCtionooiiiiiiiiii e 3
11 MIOBIVABION ¢ttt et e e 3
1.2 Problem desCriptionoiiiiiiiiiiiiii e 3
LR T 7o) o LTSS OO PP PPUPPPPPPTRN 3
1.4 Purpose and research quUestion...........ooeoeiiiiiiiiiiiiiiiiciiii e 4
1.5 SEructure Of theSiS. ... i 4

Chapter 2. Geographic information Systemcccccviiiiiiiiiiiiiiiiiiii e, 6
2.1 Representation of geographical datacceeviiiiiiiiiiiiiiiiiiiii e, 6
2.2 GIS DeVEIOPINENt ...ceeiiiiiiiiiiiee e e e e e e e e e e e 9
2.3 MAD COMPOINEITES ... ettt ettt e et e e et e eeeeai e 10

Chapter 3. Overview of the experiment..................coooiiiiiiiiiiiniiiiii e, 14
3.1 General information about exXperimentcceviiieeeiiiiiiiiiiiiiiee e 14
3.2 Technologies used in eXPEriment............ovviiiiiiiiiiiiii e 15

Chapter 4. Methods used to speed-up the process of rendering 16
4.1 BaCKEIOUNA ...ooviiiiiiiiie e 16
4.2 CIUSEET SETALEZY 1oeetiiiiiiiiiie e et e ettt e e e e e e e e et eeaeeeas 17
4.3 Decimation PrinCipleooouii it 18
4.4 Data encoding method ... 19

Chapter 5. EXPErimentccoooiiiiiiiiiiiiiiei e e e e e e e eeaaens 24
5.1 Analysis and implementation..............uueiiiieiiiiiiiii e 24
0.2 Test eNVITONINENTiiiiiiiiii e 27
5.3 Performance evaluation...........oooiiiiiiiiiiiiiiiiieit e 28
5.4 CONCIUSIONS 1ttt ettt e e e e e e 32
5.5 Possible IMProvements.oviiiiiiiiie e 32

Chapter 6. Discussion and cONCIUSION.............ccoeiiiiiiiiiiiiiiiiie e 34
6.1 WOTK OVEIVIEW ...ttt 34
6.2 Potential improvements and future work...........ccccoooiiiiiiiiiiiiii . 35

RESTIINEE ... e 36

RETEIEINCES ... 37

Chapter 1. Introduction

1.1 Motivation

The increasing popularity of web-based geographical information systems (GIS)
and services for delivering maps for practical and scientific purposes can be
regarded as one of the most important developments in the advancement of
cartography. The vast majority of developed systems and applications appear to be
all kinds of state registers that deal with geographical information. It frequently
happens that the amount of spatial data the applications need simultaneously to
show to the users is so huge that the browsers may have troubles with data
visualization and generalization. So the actual challenge remains to create top-
quality and lithesome geographical information systems with respect to velocity

and data presentation of the system being described.

1.2 Problem description

The problem that simultaneous display of large amount of geographical data may
lead the browsers into the state when they cannot respond to the users requests is
typically recognized only after GIS web application has been developed. Only after
the detection of such problems the attempts to optimize the web application take

place.

The main goal of the work is to study how current geovisualization methods and
tools support representation and encoding of very large geographical datasets
(more than 100000 objects). This thesis evaluates, which features could provide
benefits for fast representation and generalization of spatial data. It will be studied
how to combine benefits and create a web application that can handle large
amounts of geographical data. Current work tries to take advantage of recent
technological advances in data formats. More attention is directed to the

developments in open standards for encoding both data and graphics.

1.3 Scope
Like every web application, web mapping systems have a client-server architecture

that allows them to exchange information through the Internet. Therefore different

representation and optimization methods can be applied on both the server- and
client side of the web-applications. Thesis whereas focuses on the client-side of the
GIS web applications. Server-side will also be touched, but to a lesser extent.

Spatial databases and database geographic queries are not considered in this paper.

1.4 Purpose and research question
This work tries to analyze and solve the following problems:

e The first problem is that standard graphical user interfaces neither support
complex queries to the databases linked to the visual display, nor they
enable flexible manipulation of display parameters. Current work makes an
overview of the most commonly used ways and technologies to speed-up the
process of rendering objects on the map. Various rendering and
representation methods are considered which cope with very large datasets
of high dimensionality, the scale at which phenomena exist and the level of
details used to digitally represent objects on different zoom levels.

e The second problem is geovisualization usability. Thesis analyzes semiotics
and meaning of large amount of spatial data, namely, how visual depictions
relate to wunderlying meaning, to desired uses and human-computer

interaction.

GIS web application will be built in order to analyze how browsers cope with an
excessive amount of geospatial data. Different optimization methods (clustering,
decimation principle) and rendering techniques (SVG, canvas) will be implemented
in the application in order to order to give the answer, whether these techniques
are helpful and can reduce features rendering time, or vice versa, they just slow

down the work of the application.

1.5 Structure of thesis

Current work consists of 3 logical parts, divided into 6 chapters. Chapter 1 is
introductive, it makes a short overview of a thesis, scope of the work and the
problem domain. Chapter 2 is the background of a thesis; it consists of a
description of geographic information system, its standards and components.

Chapter 3 provides general information about the practical part of the thesis. Most

common technologies used to speed-up the process of rendering are thoroughly
overviewed in Chapter 4. Chapter 5 describes the practical part of the thesis and
explains how different optimization techniques are implemented in the prototype.
This chapter also contains the analysis of the obtained results and some proposals

for additional improvements. Analysis is followed by the conclusion in Chapter 6.

Chapter 2. Geographic information system

GIS is defined as a computer-based technology and methodology for collecting,
managing, analyzing, modeling and presenting geographically referenced data for a
wide range of applications [4]. According to this definition, GIS primary role is to
deal with geographic data from input to output. Following chapter will give an

overview of the main geospatial data types and their representations on a map.

2.1 Representation of geographical data

2.1.1 Vector and raster data

Geographical data represent objects and phenomena from the real world, such as
forests, roads, floods, etc. In terms of graphics, geographical objects are essentially
divided into two great classes: raster and vector. Both structures have different
methods of storing and displaying spatial data [2|. Raster data is cell-based, where
each cell, also called pixel, is used to encode geographic data and contains
associated attributes indicating color value of the cell. In comparison, vector data
represents mathematically associated objects that are considered as geometrical
shapes. This thesis concentrates on vector data model and raster data model will

no longer be discussed.

2.1.2 Vector data type
In GIS, vector data is classified as three main types: point, line, and polygon
forming an area.

e Point: A point feature is a spot that has no physical or actual spatial
dimensions, but does have specific location. Point is shown as a convenient
visual symbol to locate the feature it represents and is defined by a latitude
longitude pair. However, the point does not indicate the actual length or
width of the feature.

e Line: A line is a one-dimensional feature that consists of at least of two
points, the endpoints, and optionally points in between.

e Polygon: A polygon or shape is a list of points where the last point is the
same as the first, so that the connecting the points encloses a geographic

area |3].

A geographic feature is an application object that represents a physical entity.
Each feature may or may not have additional associated attributes and be
rendered in a different way - this way is determined by a geometry associated with
the feature [12]. But representation of the feature mainly depends not only on the
feature itself, but on also on the map scale and the way how it is visualized. For
instance, point can represent a city with name and population, even though in
reality city has area. Lines are typically used for visualizing roads, streams or
administrative boundaries. Objects such as agricultural fields, political districts or

forest areas can be visualized as polygons.

2.1.3 Spatial data visualization

Human insight is very important to extract high-level information from a dataset.
Therefore it is very important to provide end-user with a comprehensive user-
centered and accessible design. Multimedia cartography and GIS can play a very
important role in the process of visualization of spatial data and making the

discovered knowledge understandable and interpretable by human beings.

Geovisualization, short for geographic visualization, or visualization of geospatial
data represents the interface between scientific visualization, cartography and
image analysis. Due to the capability of combining geospatial information with
“human vision and domain expertise”’, geovisualization sets the basis for effective
support of data exploration and decision-making processes and can be applied to

all the stages of problem-solving in geographical analysis [10].

Frequently it is necessary to visualize the increasingly large and complex volumes
of geospatial data that are becoming available. Main problem here is that given a
large dataset, the display may become cluttered to the point where it is impossible
to distinguish information [7]. This requires both advances in geovisualization
methods to deal with very large data volumes and advances in integration of these

methods with geocomputational ones [1].

2.1.4 Spatial data generalization

As is the case with any data relating to geographic information, scale is a critical
issue in GIS, because it defines the limits to human observations of the Earth.
Different information is required at varying scales, and appropriate detail should
be presented at each scale. As scale of display increases, precision also decreases
and shapes cannot be precisely represented. As a result, all spatial datasets should
be generalized. Spatial data generalization is the process responsible for generating
visualizations or geographic datasets at coarser levels-of-detail than the original
dataset, while retaining essential characteristics of the underlying geographic

information (see Illustration 1) [5].

N

Iustration 1. Generalization of geographic objects

Map generalization is a core stage of map design [9]. While generalizing
geographical objects it is necessary to remember that the human factors aspect is
very important. This challenge raises many specific issues including: emphasis of
the most important map elements, representation of the world in a faithful and
recognizable way on different zoom levels and preservation of the object’s
distinguishing characteristics. Generalization must be done very precisely, because
wrong classification, for instance, may hide the characteristic pattern of a

statistical surface [13].

A great deal of attempts has been made to automate the process of generalization.
Despite the fact that automatic generalization has been a hot research topic for
decades, there still does not exist a set of universal rules or algorithms that
explicitly define how generalization should be performed [15]. Therefore, the
objective of automatic geometric generalization is to automatically preserve the
important parts of the data and eliminate or simplify the less important ones in

order to create a map that will have good visual communication characteristics

17].

2.2 GIS Development

2.2.1 GIS architecture

Rapid progress of Internet, application of data warehouse technology and the
combination of GIS and Internet have paved the way for web distribution of GIS
spatial data [19]. Users can browse the spatial data in GIS web application by
arbitrary node on Internet, make thematic maps and make all kinds of spatial
checkups and spatial analysis, thus, GIS can enter numerous households and

become a kind of public instrument [19].

Typically, GIS web application is divided into three tier client/server mode where
three major types of service components are: presentation, business and data.
Server contains all back-end logics and is responsible for the presentation by
displaying the map images. Server receives the request with needed parameters
and information and does required geoquery to the database. When the
geographical data is fetched from the database and returned to the server then, if
necessary, it is processed or edited and transmitted back to the client. Client holds
map container which contains all mapping elements and logic engine, which
renders features. Most commonly geographic data, vector data in our case, is
exchanged through special GIS formats, the most popular of which are GeoJSON
(JSON object containing object’s geometry), GML (Geography Markup Language)
and WKT (Well-Known Text). Such formats are efficient for spatial data
exchange, as they compress geodata which makes files smaller, and consequently

decreases file transfer time.

2.2.2 Web GIS libraries

In order to visualize a map and features on it, GIS web application should use
special libraries that can embed interactive map into a website. These are
JavaScript based libraries, such as OpenLayers, Leaflet, Google Maps, and Bing
Maps. All this libraries provide methods and tools for creating dynamic, rich and
interactive maps: enabling and disabling layers, changing base layer, zooming in
and out, selecting element on the map, printing, etc. Key advantage of using such
libraries is that they support the delivering of up to date information to the
browser, therefore there is no need to refresh the webpage. All these libraries can
be customized for satisfying needs of concrete GIS product. An example of such

interactive map that is using Google Maps library can be viewed on Ilustration 2.

= e SS—
/ %, British Forces Broadcasting Service X \
w C"P"' g The British Forces Broadcasting Sewvice (BFBS) provides radic and ‘ E }
oftage 2 e 2 4 1 arth \
e 3 The Pool telew5|gn programmes for HM Forces. and their dependents. in s ——
e = g House 1 Afghanistan, Bosnia, Brunei, Canada. Cyprus, the Falkland Islands, Traffic
L;,ire tioue § Germany. Gibraltar, Kosovo. the Middle East, Northern Ireland and
(& 7 . oﬂ C&f““‘ Tristan da Cunha as well as a live satellite service to Royal Navy Photos
.@‘ 'C”eh/”4 i ships at sea. Editorial control is independent of the Ministry of
|+ ‘e Defence and the armed forces themselves. The BFBS was Weather
,T_{J established by the British War Office (now the Ministry of Defence) in Webcams
1943. Since the 1980s, BFBS has formed part of the Services Sound How
= and Vision Corporation (SSVC). a registered charity. which is also Videos &
lexH responsible for the British Defence Film Library, SSVC Cinemas, and —r
Combined Services Entertainment. providing entertainment for HM v Wikipedia
Forces around the world. Neither BFBS Radio nor BFBS Television Biyiing

carry commercial advertising.

e Public Transport
Al text is ay ble under the terms of the Creal
< ;)
[29 WIKIPEDIA Terrain
L_J 31//;,,% 45°
e bl/e* Westhwwruyo—g
— o s s
sa Gevra}cx Cr.()$ S *@ . e\’:“ ngi
Honeysuckle - o (f a, %, Dorchester
Culens Cottage VIcRUShES s W gy Qokidge Y Chouse Wilow Court v Nexus Consultan... ® X
Cottage " %k ouse.
X Good Life Lee Cottage SL9SES °
Live traffic chance Slow Fast
- -

o Europa House
& .
B i Ok . High Cedars
& Gerrards Cross 9 Peel House oo
Marsham ; ouse.
| _I_l o o Quendon Hose & AN oakEng way
100 m Trillum _Carstone %, G . Cottage & \

)

Mlustration 2. Web application with map component

2.3 Map components

2.3.1 Layers

One of the key features of GIS is to display data from different sources with
varying coordinate systems and projections in a map. A map consists of one or
more layers which are thematic representations of geographic information [11]. A
layer is a special container for holding features of one type and can have different
data sources. Each layer can have its own coordinate system. Due to the fact that

map uses exactly one coordinate system, while choosing another layer to show, this

10

layer coordinate system will be on the fly reprojected on the map’s coordinate

system.

There exist two kinds of layers: base layer and non-base layer. Only one base layer
can be enabled at a given time. That layer specifies map properties, such as
projection, units, number of zoom levels available on the map. Non base layer do
not control map properties and multiple non base layers can be enabled at a time.
Every layer can be used as a base layer - previous base layer becomes non base
layer and selected layer becomes a base layer. A base layer can be overlaid with
multiple non base layers which must share the same coordinate system as the base

layer [11].

2.3.2 Web services for publishing vector data

Usually GIS web applications use different web services to publish geographic data
on a map. Nowadays there exists a great amount of different web services, but the
most commonly used are Web Map Service (WMS) and Web Feature Service
(WFS). Web service is an independent software component that can be accessed
through the Internet in the application. Each web service has different approaches
for publishing vector data: WMS renders vector features as images which end-user
cannot edit or spatially analyze, while WFS does requests for geographical features
across the web using platform-independent calls and supports feature manipulation

(updating feature, deleting feature, etc.).

For example, layer holding a world map served by WMS can be used as a base
layer and two vector layers as non-base layers overlaying base layer and rendering
set of geographical objects. As a result, end-user sees an unchangeable image of a

world map and changeable set of vector features rendered on a map.

2.3.3 Map tiling scheme

While rendering maps and spatial data on them, it is essentially important to
define fixed zoom levels in which the map can be seen. Then for every zoom level
the map is rendered with a predefined configuration and cut into tiles, which are

usually 256 x 256 pixel images (see Illustration 3). A client can directly access

11

these tiles which improve the performance: it allows ensuring only the image
within the user's view are requested and loaded by the client [14]. Alternatively,
single-tile approach can be used which loads all map tiles at once and results in
one large image for each layer. However, this can lead to disastrous consequences:
if the loading of one tile is delayed because of network related errors, then the
whole layer will not be drawn until the request of that one tile returns, successful

or not [11].

Ilustration 3. Map tiling scheme [21]

Additionally, it is important to define a bounding box (BBOX) parameter, which
determines the extent of the map. Bounding box is a rectangle oriented to the x
and y axes, which bounds a geographic dataset within which all geographic
features lie. By default, if BBOX parameter is not specified, all geographic datasets
will be shown. For instance, if user has one layer containing features of New York
and the other features of Moscow, one will see most of the World. The bounding
box also determines the aspect ratio of the map. If only one of width or height is
specified, the other will be determined based on the aspect ratio of the bounding

box [18|.

12

2.3.4 Rendering technologies

In order to render spatial data, browsers have the support for different
technologies: Canvas, Flash, SVG, etc. So to make the process of drawing
geometries in the map independent from the vector layer using concrete
technology, the concept of renderer is used [12]. In addition, vector layer can have
a style associated with it that is used by the renderer to draw the geometry that
represents a feature [12]. For example, a layer can visualize a street network and
each street is rendered individually using a specific style according to the street's

classification (highway, main road, secondary road, etc.) [12].

A vector layer can have one or more strategies attached to it [12]|. Strategy is a
class that makes processing on the vector layer without layer knowing what is
happening [12|. The most popular strategies are:

e Strategy which loads the content of a data source attached to the vector
layer only once. This is usually used to load a data file in a vector layer,
because it is only required to be loaded once.

e Strategy which loads content from a data source each time the bounding
box of the viewport changed [12]. This strategy is useful for vector layers
that dynamically loads content from a WFS server and needs to update its
contents every time the map bounding box parameter changes [12].

Each library wused for rendering maps can also have library specific
implementations of strategies - some minor modifications can be implemented in

order to improve the performance of concrete strategy.

13

Chapter 3. Overview of the experiment

3.1 General information about experiment

As for practical part of the thesis, a small GIS web application will be built in
order to see how browsers cope with an excessive amount of geospatial data. Some
popular optimization and rendering techniques will be implemented in the
application: mainly clustering strategy, canvas renderer, and decimation principle.
Detailed description of above mentioned methods can be found in the subsequent
chapters. All results will be benchmarked and analyzed in order to give the answer,
whether these techniques are helpful, or vice versa, they just slow down the work
of the application. Moreover, analysis will try to give an answer what additional
aspects should be taken into account while developing GIS web applications that

simultaneously need to display large amount of geographical data.

Because of the limited time frame allocated for writing this paper and creating web
application, this thesis restricts the focus only on one type of the vector data,
namely point features. Point features were chosen mainly because their format is
not so extensive, so it is easier to deal with their geometries and implement
different optimization techniques. Since at the time of writing this paper there was
no open-source solutions concentrating on client side of the web application and
implementing current optimization techniques considering other vector data types,
this work assumes that for other vector data types the result will be the same as a
result achieved with point features. In order to reduce complexity of the prototype
and focus more on the client-side of the GIS web application and implementation
of optimization methods, geographic data used in experiment will be randomly

generated and not be queried from the database.

User interface of the web application consists of two main components: input
fields, where user can chooses how many points one wants to visualize and what
optimization technique to use, and a map, where user can view all the geographical
data. Number of displayed data and its structure depends on user choice and is
perceived from the input fields. All input field validation takes place in the server-

side and if there occurs an error then appropriate message is shown to the user.

14

3.2 Technologies used in experiment

Created web application consists of two parts: user interface, i.e. what end-user
sees in browser, and service code that runs on the server side. Grails web
framework was chosen as a main framework for holding both client- and server-
side code. As for front-end development, an OpenLayers library (version 2.11) was
chosen to embed a map in browser as it is one of the most popular open-source
libraries for visualizing maps. Besides this, HTML, CSS, JavaScript, Twitter
Bootstrap (version 2.2.2) and jQuery (version 1.8.0) were used for creating and
showing elements in the browser. As for back-end development, Groovy language
was chosen to implement service code, business logics and some optimization
methods. CloudBees service' is used as a web hosting provider in order to access
the application from the Internet. The application itself can be accessed via the

following URL: http://mappoints.timasjov.cloudbees.net /.

' Homepage of the service: http://www.cloudbees.com/

15

Chapter 4. Methods used to speed-up the process of rendering

4.1 Background

There can appear a serious problem when vector layer contains lots of features
(more than 10000 objects) and an ugly effect can appear in a map. Depending on
the zoom level and layer style, features can be rendered overlapping each other’s

(see Illustration 4).

°@

Q
bs”
i "-'" = :

Ilustration 4. Interactive map containing great amount of overlying features

This can lead to very serious problems: user-interface can become terrible and
visual depictions may not properly relate to desired uses - it will be practically
impossible to understand where the actual object is located and difficult to select
necessary feature. In this case self-overlaps can be deformed by simply replacing

punctual symbols with other aggregated symbols.

Another obstacle to the development of vector web mapping is performance. Web
maps must be fast maps, and existing web maps based on vector data usually do

not meet the minimal requirements in terms of display speed [14]. However, taking

16

into account that client device memory, processing and connection capacities are
always improving, web mapping with vector data is acceptable approach [14].
Compared to raster web mapping, vector data fast representations methods and
techniques are not well analyzed and established yet, however, approaches exist to
improve considered processes [14]. Such methods and tools are, for example,
different clustering strategies, pre-rendering of used vector data, spatial indexing,
vector tiling, data generalization, etc. Paragraphs 4.2, 4.3, and 4.4 contain detailed
description of some of the most popular vector mapping performance optimization

methods.

4.2 Cluster strategy
One of the most common and yet simple ways that allows user successfully to deal
with a large number of geographic features is clustering strategy. Cluster is a
homogeneous group of objects with similar characteristics. Given the set of features
within a layer, cluster strategy on the fly computes the distance among the
features and if the distance between them is relatively small, it clusters them.
Distance directly depends on the zoom level and most commonly is calculated in
pixels, because standard metrics (for instance, kilometers or miles) have different
meaning in different zoom levels. So if the distance between features is smaller
than predefined number of pixels, a new cluster is created and objects are added to
the cluster. The clusters are nothing more than point geometry features with a new
count attribute holding references to the vector layer features it contains [12].
When zoom level changes, following steps take place:

e New cluster stores a reference to the previously computed clusters (cluster

related to the previous zoom level he came from)

e New cluster is computed and added to the vector layer

e Start a tween to animate from the previous to the new cluster positions
If user zooms in the view, it means one go to a level with more clusters than the
previous one, that is, a cluster at level N becomes M clusters at level N+1 [12].
These means that animated cluster makes use of an extra array of clustered
features (the previous one). The vice-versa occurs for zoom out actions when M
clusters at level N becomes one cluster at level N-1 [12]. At the end of the zooming

process positions of the clusters should be refreshed, which implies redrawing the

17

vector layer. As a result, it takes additional time to perform the necessary
calculations. This drawback does not play significant role in the process of
visualization of a relatively small number of features, but it can matter when user
needs simultaneously to render tons spatial objects. Also, OpenLayers applies
special animation that indicates the user about zoom level change and new cluster

division or merge.

As a result of applying clustering strategy, there will be no feature overlaps any
more, map will have more user-friendly design, appearance and look will be
improved. Also, map becomes more consistent and intuitive which directly helps to

improve human-computer interaction as it is easier to understand where concrete

feature is located (see Illustration 5).

Mlustration 5. Geographical data clustering

4.3 Decimation principle

Another strategy that will be discussed is decimation principle, known as
subsampling. Decimation principle used in GIS is very similar to the decimation
principle used in Roman army or signal processing, namely it is a method used as
a low-pass filter. In GIS, the use of this principle helps to reduce the number of

features to be rendered on a map.

18

Subsampling can drastically increase not only the overall performance, i.e. the
process of embedding maps to the end-user, but also incredibly improve the
geovisualization usability: as the number of rendered features decreases, it becomes
easier to read and understand the semiotics and meaning of the map, provided
that the map style stays the same. The main advantage of subsampling is that due
to the smaller dataset, the data processing and transfer are faster, as it is needed
to transfer less objects to the view. As a direct consequence of this, browsers needs

less memory and machine resources to render required dataset.

Decimation principle takes place before the data is rendered on the vector layer.
After the content of the data source is loaded, following steps take place:

e Special function loops through the dataset and leaves only each n-th
feature. The number of features to be removed from original dataset should
be manually defined

e Processed dataset is added to the vector layer and drawn on the map

This means that this strategy does not use any additional data structures nor
performs any additional calculations. No special animation or style changes take

place.

Primarily decimation principle helps not only to improve web vector mapping
performance, but also to solve scalability problems as well as enhance map
readability and accessibility. In addition to this, user will be able to more

accurately track and manage the content of the map.

4.4 Data encoding method

The speed of data transmitting and visualization greatly depends on the
architecture that web application is using. Technology trend within information
technology has made it possible to move towards distributed computing and
Service-Oriented Architectures (SOA) and to no longer use the familiar computing
paradigms such as static server-client approaches as their centralized architecture
results in harder management solutions and practices for data representation.
Modern large scale systems require more flexible asynchronous communication

models to cope with the high number of participants and transfer of larger datasets

19

between them [16]. Precisely for this reason more and more geographic web
applications started to implement service-oriented architecture as it helps to create
loosely coupled and component oriented architecture and provides greater

interoperability to cope with very large datasets of high dimensionality.

SOA can be implemented using different technologies, including Simple Object
Access Protocol (SOAP), Representational State Transfer (REST), Common
Object Request Broker Architecture (COBRA), etc. All implementations provide
their specific set of protocols and interfaces for accessing different data sources and

information exchange services.

In the web application client usually downloads vector data and displays it on top
of raster images, which are usually published through different web services [14].
SOA helps to solve certain problems associated with interoperability between
architecture components, but the well-known limit of this approach is the long
time usually necessary to transfer and decode vector data. Different data formats
can be used for interfacing with SOA service, but XML format is the common
choice for transmitting structured data. However, usually special GIS data formats
are used for encoding, compressing and transmitting geographic data structures as
processed files are smaller than XML files. For example, a GeoJSON document

containing dataset of two features with attributes (see Illustration 6).

"data": {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [59.4339, 24.7549]
¥

"properties": {

20

J

[58.3706, 26.7157]

"name": "Tallinn"
}
}s
{
"type": "Feature",
"geometry": {
"type": "Point"
"coordinates":
¥
"properties": {
"name": "Tartu"
}
}
]
}
}

Ilustration 6. Dataset containing two features in GeoJSON format

Provided that 1 byte is needed to represent 1 character if UTF-8 encoding is used,
it is simple enough to calculate how many bytes is required to transfer each data
file. GeoJSON file contains 270 characters, which respectively gives 270 bytes,
where each feature takes 111 characters (or bytes). For instance, user views a 256
x 256 pixel area and is at a zoom level so high that each feature is rendered as one
and that GeoJSON file format is
used to transfer features, it takes 111 x 65536 = 7277493 bytes or about 6.94

pixel. Assuming that the area is full of objects

megabytes storage cost. It requires a lot time and machine resources to perform
the transfer and decoding of such dataset. As can be seen from the example, the
use of service-oriented architecture and special GIS data formats cannot

completely solve the problem of representation and transportation of spatial

objects.

21

Another possibility to transfer data over Internet is to use a binary scheme format,
where each byte means specific information about an object. User can on one’s pat
decide what information one wants to hold in a single band image (i.e. black and
white). There are 256 different options that can be used for encoding to store
information in 1 byte. For example, it can be defined that 1 means that the object
color is green, 2 - yellow, and 3 - purple and so forth. Thus, the raw storage cost of
such binary scheme is 256 x 256 x 1 (one band only) = 65536 bytes or 0.0625
megabytes. Furthermore, different image compression techniques can take place in
order to store or transmit data in a more efficient form. Described actions take
place in server-side map engine which does all the work to generalize the data and

create a meaningful tile for every zoom level that has the data encoded.

Before the advent of HTML5 it was not easy to present binary data in JavaScript.
All binary data had to be escaped so that it could be placed into a string element
in JSON and passed forward to special GIS JavaScript libraries. As a result, a lot
of extra time was needed to process the data. However, solution to the problem
was found when new features of HTML5 came out, particularly canvas. Canvas
element is a part of HTML5, which allows drawing graphics on the fly. Its main
advantage is that it can render bitmap images and manipulate the pixels directly.
The appearance of canvas element has significantly affected the whole process of
spatial data rendering: now server can send the data over the wire encoded on
what appears to be an image, then client can add that image into an HTMLb5
canvas, which will render it on a map, which represents canvas drawing surface.
Many GIS JavaScript libraries (Leaflet, OpenLayers) already support canvas,
which significantly simplifies the process of rendering. Furthermore, HTML5
canvas does not even need to be used to draw, it can be only used as a binary
decoding mechanism that will generate JSON objects. GIS client-side map libraries
will process decoded data, create real vector objects and add them to the map.

Also, different event handlers can be added to the vector features.

Canvas element made it possible to decode a huge amount of meaningful geo-

referenced data in a highly compressed format and manipulate them in JavaScript.

22

This technique guarantees that the user will see a dynamic map containing tons of

vector features that can be quickly refreshed.

23

Chapter 5. Experiment

This chapter contains background information about the experiment, explains the
realization of implemented rendering methods and compares them by running
performance tests. Section gives a first evaluation of each implementation and

summarizes the results.

As a result of each implementation, user will see dynamic map containing required
number of geographical objects. All implementations use default tiling strategy:
the tiles are drawn on the map once they are ready. In some cases it could produce

a flickering effect when the map is panned several times in short intervals.

5.1 Analysis and implementation

5.1.1 Default renderer

The first scenario considered in the experiment is rendering geographical objects
using default OpenlLayers renderer and without applying any optimization
techniques. OpenLayers uses SVG (Scalable Vector Graphics) as default renderer.
All major browsers have a support for SVG and can render vector objects directly
which makes the use of <svg> HTML tag. All actions take place in the thick
client which means that once the data is generated and initialized, it is in the

browser and there is no need to request the same data again.

To begin with, vector layer is created using OpenLayers.Layer.Vector class and
added to the map which, in turn, is created using OpenLayers.Map class. Vector
layer will hold vector objects that will be subsequently created. Once the layer is
initialized, OpenLayers creates SVG element and inserts it into the layer container.
SVG renderer is responsible for drawing geometries and other elements (labels,
borders, texts, etc.). Once renderer is initialized, necessary number of features is
generated using OpenLayers.Feature class and added to the vector layer.
Afterwards vector layer is added to the map which means that SVG renderer
starts drawing features on the map. Also, special styling (afterwards default

styling) is applied using OpenLayers.Style framework: features are red with black

24

stroke. This framework is used to control the styling of each object attached to

vector layer allowing the use of custom styling properties and rules.

5.1.2 Clustering

Cluster implementation developed for this thesis is the first considered technique
that tries to improve web vector mapping performance. Cluster implementation
developed for this thesis uses two different approaches regarding creation of

clusters: client-side clustering and server-side clustering.

Speaking about the client-side clustering, one of the first things to note is that all
processes are performed on the client side. As in the default renderer technique,
map and vector layer are created in the same way. SVG renderer is also used to
draw geometries. After initialization of the map and vector layer, required number
features are generated as standard OpenLayers.Feature features and clustered
using OpenLayers.Strategy. AnimatedCluster class which is a subclass of a default
OpenLayers.Strategy.Cluster class, so it inherits all the properties from the
superclass and extends some extra features. Afterwards created objects (i.e.
features that represent clusters) are added to the vector layer which is, in turn,
added to the map. Animated cluster strategy holds original features in cache and
loads clusters dynamically depending on the user needs. When user changes zoom
level or pans the map, all objects in vector layer are destroyed and new clusters
are generated from cached features. To sum up, one can say that this
implementation tries to open new opportunities in visualizing vector data on the

client side.

Server-side clustering implementation developed for this thesis uses a slightly
different approach. The main computations are performed on the server-side and
thin client is used only for rendering. The workflow is as follows: client sends a
request to the server with number features user wants to render as parameter.
Server generates required number of objects providing each object with random
geometry. Thereafter server initializes map by dividing it into squares (or cells).
Each cell is relative to fixed decimal degrees of latitude and longitude values and

its size does not depend on the map zoom level. When map grid is ready, special

25

method is invoked, which loops through all features and for each feature by its
coordinates determines in which cell it is located. In order to improve performance,
java.util. Map interface is used to hold cells, which maps cell coordinates to the
remaining cell properties. Features inside a cell are then grouped into cluster. If
there are no features in the cell, then cluster will not be created. Cluster
coordinates are found by calculating the average latitude/longitude for the
properties of the corresponding cell. After the process of clustering is finished, all
created objects (i.e. clusters) are returned back to the client who transforms them
into standard OpenLayers.Feature features, adds them to the vector layer and
renders on a map. If user changes zoom level, then all clusters have to be
recalculated and rendered again - all features in vector layer are destroyed and the
original workflow is repeated again. The grid-based approach has a fast processing
time performance and directly depends on the size of the grid and the number of

features to render.

Special styling is applied for both clustering techniques: in order to distinguish
objects three colors are used to style the clusters depending on the number of
features they contain:

e Red, if cluster contains more than 50 features

e Yellow, if cluster contains from 15 to 50 features

e Green, if cluster contains less than 15 features

5.1.3 Decimation principle

Another strategy to be implemented in the experiment is decimation principle. The
essence of this technique is to reduce the initial dataset and simultaneously show
fewer objects on the map. These actions may greatly improve performance and
scalability issues. As well as in client-side clustering, all actions are performed in
the thick client. OpenLayers default renderer is used to draw objects. Map and
vector layer are also created and initialized in a standard way as in the clustering
technique. After necessary number of features are generated as
OpenLayers.Feature features and identified, special function loops through the

created dataset and leaves only each 10-th feature, i.e. features nr 1, 11, 21, etc.

26

Just as in the previous strategies, features are added to the vector layer and

rendered on a map. Considered strategy uses default styling.

5.1.4 Canvas rendered

One more technique that focuses on improving web vector mapping performance is
the use of the canvas renderer. OpenlLayers has built in support for canvas
technologies already available in browsers which makes use of the <canvas>
HTML tag. OpenLayers canvas renderer is based on 2D canvas drawing element
and is responsible for drawing objects on the map. It is not used as a binary

decoding mechanism (see data encoding method in Chapter 4).

Map and vector layer are created in the same way as in the default renderer
technique. Once the vector layer is initialized, OpenLayers creates HTML canvas
element and inserts it into the layer container. Canvas renderer draws objects
using redraw() method, which draws features using the lineTo() and stroke()
methods. Once the renderer is initialized, required number of features are
generated as OpenLayers.Feature features and added to the vector layer. Just as
the vector layer is added to the map, canvas renderer will automatically start

drawing features on the map.

It should be noted that canvas renderer has several disadvantages, for example, it
redraws the whole layer when even a single feature needs to be redrawn. In
addition, like the SVG renderer, canvas renderer does not refresh the view during

the dragging of the map due to performance reasons [11].

5.2 Test environment

All test cases were run with a 1026 x 500 pixel map in browser Chrome
25.0.1364.97 on Windows 7 with a quad core CPU (3.3 GHz) and 16 GB memory
RAM. Browser Chrome was chosen mainly because recent studies indicate this is

the fastest in performance tests [20].

27

5.3 Performance evaluation
The prototype was tested on following datasets: 1000, 10000, 100000, 500000, and
1000000 features. Following test cases were executed for each dataset:
e Render all features - the initial drawing of the vector layer containing
specified number of features
e Change zoom level - the process of zooming in to a specific to zoom level
e Select feature - hovering the mouse over the specified feature. This test case
was carried out on a random feature.
In order to evaluate performance all test cases were executed 10 times and then
average result was found. Such a large number of tests carried out will exclude
element of randomness and produce reliable results. Before each test browser cache
was cleared in order to avoid temporary storage of static resources. Time-taking
was measured in milliseconds and was started after the server response to the
input validation request. Average results for each test case can be found in Table

1, 2, 3. Further information about each test case can be found in Appendix A.

Test case 1: Render all features
The table below (see Table 1) shows an average time needed to draw a vector

layer containing specific number of vector objects.

Table 1. Average rendering time (milliseconds) for test case “Render all features”

Number of objects
Technique 1000 10000 100000 500000 1000000
None 42.2 367.8 4454.3 26620.2 54434.4

Clustering 37.3 201.3 1901 9827.3 19835.4
(client)

Clustering 203.4 376.5 1870.9 5429.7 10916.3
(server)
Canvas 67.4 439.5 4657 26640.7 55258.7

Decimation 17.9 143.6 1277.7 6128.9 23108.1

To start with, results in Table 1 indicate that OpenLayers default SVG renderer is
slightly faster than canvas renderer. The latter one is approximately 16% slower
when showing less than 10000 objects and 1% slower when there are more than

100000 vector features on the map. Moreover, SVG renderer additionally creates

28

two special SVG group elements in the DOM which hold basic feature attributes,
such as ID, type, geometry, style. This allows accessing every feature from DOM
by ID. OpenLayers canvas renderer does not hold any feature attributes and just
draws geometries using 2D canvas on the drawing surface. However, both
renderers do not cope well with their duties when it is needed to show more than
100000 vector objects on the map as user will have to wait almost 5 seconds.
Furthermore, features density goes too high and map becomes unreadable. In this

case some optimization techniques may be applied.

According to the received data, both optimization techniques are extremely
effective and can reduce the time needed to draw features. For instance, rendering
of 100000 features wusing client-side clustering and decimation principle is
respectively 57% and 71% faster when comparing with the time needed to show all
vector objects using SVG renderer. Furthermore, server-side clustering allows
rendering features even faster than above mentioned methods. However, this
algorithm is not so efficient when there is less that 10000 vector objects on the
map as it takes additional time to transfer features from the server. But in general,
one has to keep in mind that clustering and decimation principle are two
completely different techniques. Faster execution time using clustering is explained
by the fact that objects are grouped according to their geometry and only clusters
representing features are rendered. Though, speaking about decimation principle, it
should be kept in mind that only N/10 objects are shown on the map. It also
worth noting that both clustering methods are with linear time complexity and
therefore are more suitable techniques for large datasets as the amount of time is

directly proportional to the number of vector objects.

This test case demonstrates that canvas and SVG renderers have practically the
same capabilities in visualizing vector data on the client side. They are not so good
at visualizing large datasets and therefore special optimization techniques should

be applied in order to improve performance.

29

Test case 2: Change zoom level

Before running this test case, 500000 features were randomly generated and
rendered on the map. Table below (see Table 2) shows how long it takes to zoom
in to a specific zoom level (level 5) and how much objects are visible on the screen
within the current map view. Zoom level 5 was chosen because after zooming it

becomes possible to distinguish where exactly vector object is located.

Table 2. Average response time for test case “Change zoom level”

Technique Time Visible Objects Time to render
(ms) (number) one object
(ms)

None 9641.7 11442.4 0.84
Clustering (client) 5296.1 10332.1 0.51
Clustering (server) 5281.7 13865 0.38

Canvas 4578.4 11417.9 0.4
Decimation 2115 1134.5 1.86

The first thing to note is that in all cases except decimation principle, at the end
of the zooming process there is approximately the same number visible objects on
the map within the user’s view. Once zooming process ends, OpenLayers checks
prospective bounding box parameter and automatically recalculates which objects
should be shown. These calculations heavily depend on the renderer. For example,
SVG renderer automatically recalculates coordinates of all geographical shapes,
checks if feature style has not changed and renders them on the map, while canvas
renderer does not perform any calculation and just redraws features depending on
the BBOX parameter. Due to this restrictions canvas renderer is nearly twice as
fast as SVG renderer when it comes to zooming. This test case clearly

demonstrates that zoom time directly depends on the renderer.

The second thing to note is that number of visible objects on the screen using
decimation principle is about 10 times smaller comparing with the same
parameters using other techniques. Despite the fact there are rendered only N/10
objects, it takes three times longer to render one feature. This suggests that zoom

time is not dependent on the number of vector objects.

30

Results in Table 2 indicate that both clustering techniques can improve vector web
mapping performance. This is proved by the fact that after zooming process it
takes 39% less time to render one vector object when using client-side clustering

and 68% less time when creating clusters on the server.

Test case 3: Select feature

Before running this test case, 500000 features were randomly generated and
rendered on the map. The table below (see Table 3) shows an average time needed
select a randomly chosen vector feature. In this test case, time measurement starts
when the mouse pointer enters vector feature and finishes when tooltip appears

beside the selected element.

Table 3. Average response time for test case “Select feature”

Technique Time
(ms)
None 2.9
Clustering (client) 27.3
Clustering (server) 12.0
Canvas 2.9
Decimation 2.8

Results listed in Table 3 indicate that default OpenLayers renderer perfectly copes
with its work when it comes to events and event handlers. The same result is also
obtained with canvas renderer. In accordance with the achieved data, it is needed
less than 3 milliseconds to select the vector object. Nevertheless, both renderers
have different methods for determining the feature to select. In SVG, specific event
can be attached to concrete feature, while in canvas event in attached to the whole
drawing surface. Canvas renderer determines the position in pixels where user has

clicked, finds all possible features located in that area and executes the event.

The result obtained when applying decimation principle practically does not differ
from previous results, because default OpenLayers renderer is used. However, the
use clustering technique is not very effective: it is 89% (client) and 76% (server)
slower than the above mentioned method. This stems from the fact that in the

former case one feature represents exactly one feature with its geometry and

31

additional attributes, while in the latter case one feature rendered as cluster
represents N vector objects. Cluster holds information about all N objects,
therefore more time is needed to fetch necessary data, insert it to the DOM and
show a tooltip. Moreover, in some cases cluster tooltip can be of a very large size
and may do not fit on the screen. This factor may lead to the fact that map

usability will suffer and the end-will have difficulties with navigation on the map.

OpenLayers has a great support for events and event listeners. It allows to almost
instantly get information about a certain object. This test case demonstrates that
if the purpose of the web application is to quickly find and display information,

then optimization strategies will not improve the overall performance.

5.4 Conclusions

By comparing received results achieved during performance evaluation, it can be
concluded that each technique has its benefits and drawbacks. For instance,
clustering (either server- or client-side) technique may be applied when it is needed
simultaneously to show tons of geographical objects or perform zooming
operations, while decimation principle when handling object events. Tests showed
that OpenLayers default SVG renderer is a little bit slower than HTML5 canvas
renderer, but the difference is not so tangible. To sum up, concrete renderer and
optimization method should be chosen depending on the type and the purpose of

the web application.

5.5 Possible improvements

Several possibilities exist to improve rendering and usability issues. One such
possibility is to apply progressive object loading. The principle of progressive
transmission and streaming methods is to load necessary dataset progressively and
display loaded data continuously, until the full transmission is complete. These
methods have been developed for many kinds of data including raster and vector
data. Each vector object that has been downloaded is displayed starting with a
simplified view progressively enriched with additional details [14]. Also, progressive

loading of the data may also be obtained using asynchronous queries to the server

32

for each vector object [14]. This allows user almost immediately to start operating
with visible features, instead of waiting all dataset to be downloaded. However,
progressive loading do not contribute to solve the performance problems or
improve overall rendering time: they, on the contrary, could drastically improve
the user experience and usability issues connected with manipulation of display
parameters. Nowadays such methods have become very popular and are already

used in many different GIS web applications.

Also worth noting that vector web mapping performance issues can be improved
by efficiently querying spatial data and serving only the relevant data to the user's
client. Given technique is called vector tiling. The underlying idea is that offline
preprocessor prepares the dataset by decomposing the vector data into different
parts, summarizes, and chops it into same geographic regions. In other words,
vector data on the server is cut into pieces and divided up into exactly the tiles
that the raster image is divided into. Every time the map is updated (i.e. moved,
panned, etc.), screen bounding box is calculated and if it has changed, all tile
geometries will be removed and new tiles for the new bounding box will be loaded.
After the features are added to the map, they are also cached and stored in the
user's browser cache. Vector tiles are used on a session-by-session basis and are
retrieved from the browser cache when the same request (URL) is issued more
than once [6]. Vector tiles are only cached on the client-side and no additional
server actions is required. Vector tiling can be especially useful at a small scale as
it prevents client from multiple data requests and ensures that only features within
the current map extent will be retrieved. Despite the fact that considered
technique can greatly improve performance and user experience issues, it has
several limitations, namely, startup time and additional browser memory required

to download and preprocess a large dataset.

33

Chapter 6. Conclusion

This chapter concludes the research done in this thesis. After summarizing the

results, potential improvements as well as the future work will be presented.

6.1 Work overview

The main purpose of the current paper was to study which features could provide
benefits for fast representation and generalization of large volumes of spatial data.
Work concentrates on vector data type and provides the overview of the most
common technologies used to speed-up the process of rendering objects on the
map. The main emphasis was on the practical implementation of several
optimization methods, namely, clustering, canvas renderer, and decimation

principle. Map readability and geovisualization usability issues were also discussed.

Prototype created as a practical part of the thesis was used as the input for
measuring the effectiveness of a particular technology, where the time needed to
render vector objects as well as map readability were considered as main criteria.
The results were computed for various cases, using different number of objects.
The data obtained during the experiment indicate that none of the examined
approaches allows to solve alone the performance problem - each optimization
method has its advantages and disadvantages. For example, while comparing
client-side clustering with rendering objects without applying any strategies, then
it allows to render features in double-quick time, but it takes up to 10 times longer

to select the feature.

If the goal of the GIS web application is to provide an efficient vector web
mapping in satisfying time and allow manipulation with the data, then several
optimization and rendering approaches should be used together. If the client faces
performance issues, it means the vector data have not been simplified or
generalized enough [14]. Depending on the specific context, the user needs and the
nature of the data one wants to display, suitable cartographic visualization

techniques should be developed [14].

34

With the simultaneous display of a large number of vector data on a map, it can
become very dense and it will be difficult to distinguish objects. Maps readability
could certainly be improved by clustering objects, replacing them with other
aggregated symbols or removing overlapping objects. However, these actions need
additional memory and processing capabilities, which can result in the inability to
display required dataset in satisfying time. A good balance between map

readability and the time needed to render objects on the map has to be found.

6.2 Potential improvements and future work

As this is mostly academic work so far, there remains need for improving server-
side clustering algorithm and user interface of the created GIS web application.
For example, possibility of selecting cell size depending on zoom level can be added

to the algorithm.

This work can be used as an input for future works in investigation and
implementation of different optimization techniques. One of the promising future
works related to this research could be the introduction of the spatial indexing.
Spatial indexing makes possible the development of new innovative cartographic
visualization techniques, especially dynamic visualizations with moving and

changing objects [14].

35

Kiire kaardiliides mahukate vektorandmetega
Restimee

Dmitri TimaSjov

Téanapieva maailmas esineb sageli vajadus kujundada ja arendada igasuguseid
veebipohiseid — geograafilisi infosiisteeme (GIS), praktilistel ja teaduslikel
eesmarkidel. Tihti juhtub, et geograafiliste andmete maht, mida infosiisteem peab
samaaegselt kasutajale niditama ja edastama on nii suur, et veebilehitsejatel voivad

tekkida probleemid andmete visualiseerimisega ja kiire esitamisega.

Peamine t66 eesméirk on uurida kuidas olemasolevad geoandmete visualiseerimise
vahendid toetavad suuri geograafilisi andmekogumeid (rohkem kui 100000
objekte), nende kodeeringut ja kujutamist kaardil. Téhelepanu pooratakse
iilevaatele, kus kirjeldatakse koige sagedamini kasutatavad meetodit ja
tehnoloogiad, mis tootavad viga suuremahuliste ja mitmedimensionaalsete
andmetega ja voOimaldavad mé&arata kuvatavate andmete hulka erinevatel
suumiastmetel. T66s vorreldakse visualiseerijaid (SVG, canvas), serveri- ja
kliendipoolseid klasterdamise tehnikaid ning detsimeerimise printsiipi. Lisaks
uuritakse geoandmete visualiseerimise kasutusmugavust. Véaga suuremahuliste
andmete kuvamisel ei ole kasutajale tihtipeale arusaadav, mida on kaardile

visualiseeritud.

Lopptulemusena luuakse viike GIS veebirakendus, kus rakendatakse moningaid
optimeerimis- ja visualiseerimistehnikad, et ndha kuidas veebilehitsejad saavad
hakkama viga suuremahuliste andmemahtudega. Rakenduse testimisel saadud
tulemused korrastati ja analiiiisiti, et hinnata valitud meetodite tookindlust ja
joudlust. Tulemused néitasid, et igal optimeerimise meetodil olid omad plussid ja

miinused ning konkreetne tehnika tuleb valida soltuvalt veebirakenduse tiiiibist.

36

References

[1] A. M. MacEachren, M-J. Kraak (2000): Research Challenges in
Geovisualization.

[2] B. E. Davis (2001): GIS: A Visual Approach.

[3] Google Inc., Google Fusion Tables, Geographic Data Types, [Online|. Available:
http://support.google.com/fusiontables/answer/174680 [Accessed 29 January
2012].

[4] K. Eldrandaly (2007): Expert Systems, GIS, and Spatial Decision Making:
Current Practices and New Trends.

[5] S. Mustiere, M. Sester, F. van Harmelen, P. van Oosterom (2009):
Generalization of Spatial Information.

[6] Esri Headquarters, Out of the Box Vector Tiling Using Feature Layers,
[Online|. Available:

http://blogs.esri.com/esri/arcgis/2011/06 /06 /out-of-the-box-vector-tiling-using-
feature-layers/ [Accessed 20 February 2013].

[7] P. B. McNeally (2008): Holistic Geographic Visualization of Spatial Data with
Applications in Avalanche Forecasting.

[8] D. R. Green, K. Bojar (2010): “YthanView” — Visualizing and Estuary and
Virtual Fieldwork at the Ythan Estuary, Scotland, UK.

[9] J. Gaffuri (2011): Improving Web Mapping with Generalisation.

[10] D. De Chiara (2011): From GeoVisualization to Visual-Analytics:
Methodologies and Techniques for Human-Information Discourse.

[11] T. Sauerwein (2010): Evaluation of HTML5 for its Use in the Web Mapping
Client OpenLayers.

[12] A. Santiago, Animated Marker Cluster Strategy for OpenLayers, |Online].
Available:
http://acuriousanimal.com/blog/2012/08/19/animated-marker-cluster-strategy-for-
openlayers/ [Accessed 25 January 2013|.

[13] J-C. Muller (1991): Generalization of Spatial Databases.

[14] J. Gaffuri (2012): Toward Web Mapping with Vector Data.

[15] P. Wang, T. Doihara (2002): Automatic Generalization of Roads and
Buildings.

37

[16] G. Aydin (2007): Service Oriented Architecture for Geographic Information
Systems Supporting Real Time Data Grids.

[17] S. Wiesmann, B. Stern, L. Hurni, M. Werner (2013): Generalisation of Map
Data.

[18] GeoServer, WMS Animator, [Online|. Available:
http://docs.geoserver.org/2.1.3 /user/tutorials/animreflector.html [Accessed 20
March 2013].

[19] L. Luqun, L. Jian, T. Yu (2002): The Study of Web GIS Architecture Based
on JNLP.

[20] M. Muchmore, Performance, [Online|. Available:
http://www.pcmag.com/article2/0,2817,2349496,00.asp [Accessed 19 March 2013].
[20] M. Muchmore, Performance, [Online|. Available:
http://www.pcmag.com/article2/0,2817,2349496,00.asp [Accessed 19 March 2013].
[21] Esri Headquarters, Cached Map Service [Online|. Available:
http://webhelp.esri.com/arcgisserver/9.2/dotnet /manager /publishing /static _map
_sves.htm [Accessed 19 March 2013].

38

Appendices

Appendix A. Vector data performance tests

Table 4. Rendering time (milliseconds) for the test case “Render all features”

without applying any strategies

Number of objects

No 1000 10000 100000 500000 1000000
1. 89 356 5350 26058 48225
2. 40 390 4265 24691 51202
3. 38 382 4267 25911 53516
4. 37 369 4272 26251 51284
D. 38 360 4506 27193 57325
6. 37 378 4595 28881 57439
7. 37 356 4431 28093 53770
8. 34 379 4292 27333 57817
9. 35 338 4318 26261 55128
10. 35 377 4247 25530 58638

Table 5. Rendering time (milliseconds) for the test case “Render all features” with

applying client-side clustering strategy

Number of objects

No 1000 10000 100000 500000 1000000
1. 63 189 1648 9376 19312
2. 36 210 1935 9211 19280
3. 34 176 2031 10613 18820
4. 35 209 1629 10394 18944
D. 26 214 1866 9827 19616
6. 27 175 1983 9259 22003
7. 54 169 2077 9755 22583
8. 36 192 1763 8492 19399
9. 31 247 2043 9708 9356
10. 31 232 2035 11638 19041

Table 6. Rendering time (milliseconds) for the test case “Render all features” with

applying decimation strategy

Number of objects

No 1000 10000 100000 500000 1000000
1. 26 163 1363 6330 21849
19 129 1310 5809 22771

39

3. 15 164 1303 6856 21834
4. 17 127 1290 5974 25677
D. 15 110 1243 5770 23358
6. 15 140 1350 6398 22551
7. 14 143 1236 5965 22858
8. 16 148 1269 5867 23031
9. 23 136 1260 5712 24069
10. 19 176 1153 6608 23083

Table 7. Rendering time (milliseconds) for the test case “Render all features” with

canvas renderer

Number of objects
No 1000 10000 100000 500000 1000000
1. 79 476 5133 25545 52657
2. 80 479 4103 24753 53319
3. 49 429 4748 25229 52711
4. 57 417 4619 28867 53359
5. 60 438 4710 29451 54016
6. 7 442 4562 29530 55993
7. 76 414 4642 25979 58171
8. 92 417 4613 25866 58573
9. 51 443 4766 25654 56872
10. 53 440 4674 25533 56916

Table 8. Rendering time (milliseconds) for the test case “Render all features” with

applying server-side clustering strategy

Number of objects
No 1000 10000 100000 500000 1000000
1. 202 385 2995 5575 10496
2. 189 366 2002 5404 11945
3. 199 369 1694 5402 10507
4. 206 374 1602 5419 10977
5. 185 373 1989 5851 10856
6. 322 418 1547 4906 10945
7. 191 370 1611 5760 11045
8. 171 375 1624 5375 10187
9. 187 364 2093 4797 11989
10. 182 371 1552 5808 10216

40

Table 9. Results for the test case “Change zoom level”. For each result, number
shows how much time is needed to zoom in to specific zoom level (level 5), and
number in parentheses shows how many objects is visible on the screen within the

current map view.

Data None Clustering Canvas Decimation | Clustering

(client) (server)

1. 8810 5885 4110 2127 5576
(11419) (11271) (11310) (1211) (13639)

2. 10609 6211 5078 2062 6312
(11492) (11163) (11406) (1172) (13665)

3. 11147 3929 5751 2126 5445
(11393) (11286) (11492) (1168) (13841)

4. 8936 3391 4585 2098 5846
(11526) (11334) (11363) (1111) (13803)

5. 9021 7269 4228 2169 4724
(11396) (11376) (11486) (1138) (13943)

6. 8896 5216 4681 2082 5109
(11372) (11461) (11355) (1060) (13845)

7. 10285 6159 4210 2120 5009
(11428) (11523) (11289) (1148) (13902)

8. 9249 3934 4094 2333 4883
(11467) (11423) (11527) (1097) (14125)

9. 9147 8014 4962 2051 5055
(11495) (11316) (11374) (1128) (13822)

10. 10317 3553 4085 1982 4858
(11436) (11168) (11577) (1112) (14071)

Table 10. Response time (milliseconds) for the test case “Select feature”

Data None Clustering Canvas Decimation | Clustering
(client) (server)
1. 4 9 2 2 14
2. 2 41 3 3 8
3. 3 30 2 4 13
4. 2 10 2 2 14
D. 3 18 4 2 14
6. 3 6 3 3 13
7. 2 34 3 3 14
8. 3 59 5 3 13
9. 3 43 3 4 9
10. 4 23 2 2 8

41

Non-exclusive licence to reproduce thesis and make thesis public

I, Dmitri TimaSjov (01.11.1991),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of

validity of the copyright,

Fast map interface with large number of vector objects,

supervised by Vambola Leping and Toivo Vajakas,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 10.05.2013

42

