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INTRODUCTION 

Nucleic acids such as plasmid DNA, splice correction oligonucleotides, short 
interfering RNA and antisense oligonucleotides are highly promising candidates 
for the treatment of genetic disorders. To achieve biological functionality, nuc-
leic acids need to be internalized by cells and reach their action site in cyto-
plasm or nucleus. However, due to the large size and negative charge, naked 
nucleic acids are not capable of traversing the plasma membrane of cells. A 
wide variety of delivery vectors have been designed to facilitate the cellular 
uptake of nucleic acids. One class of such vectors are cell-penetrating peptides 
(CPPs), short sequences of 5–40 amino acid residues, which are capable of 
gaining access to the interior of cells, and importantly, mediate the internali-
zation of coupled cargo molecules. 
 CPPs can be coupled to nucleic acids via a covalent bond or by complex 
formation, i.e. simple co-incubation of peptide and cargo. In case of co-incu-
bation or non-covalent strategy CPPs associate with nucleic acids through 
electrostatic and hydrophobic interactions. This strategy is simpler, less money- 
and time-consuming than covalent conjugation. Moreover, co-incubation of 
CPPs and nucleic acids requires lower concentration of peptide and cargo to 
trigger bioactivity compared to covalent conjugation. In addition, for certain 
types of nucleic acids such as plasmid DNA and miRNA only non-covalent 
coupling can be employed for transfection by CPPs. One of the major weak-
nesses of the co-incubation strategy is the complicated physicochemical cha-
racterization of the forming nanocomplexes. However, in order to be considered 
for implementation in biomedicine the properties of CPP/nucleic acid comp-
lexes such as size, morphology and charge need to be characterized in detail. 
Another bottleneck which impedes the implementation of non-covalent strategy 
for nucleic acid delivery is the poor knowledge of the cellular uptake mecha-
nisms and intracellular trafficking of the CPP/nucleic acid nanocomplexes. 
However, detailed characterization of the cell internalization pathways and cel-
lular trafficking of CPP/cargo complexes are essential to avoid undesired side 
effects and to refine their properties to yield higher activities of delivered cargo. 
 The main objectives of the current thesis were to characterize the physical-
chemical properties of CPP/nucleic acid nanocomplexes, and to examine their 
cellular uptake mechanisms and intracellular trafficking. All studied peptides 
are analogues of transportan-10, which have been specifically developed for the 
cellular delivery of nucleic acids. 
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1. LITERATURE OVERVIEW 

1.1. Cell-penetrating peptides (CPPs) 
Cell-penetrating peptides (CPPs) are a large class of short (5–40 amino acid 
residues) cationic and/or amphipathic peptides which are capable of gaining ac-
cess to the interior of cells and, importantly, facilitating the cellular internaliza-
tion of various covalently or non-covalently coupled cargos (Langel 2011) such 
as small molecules, fluorophores, proteins, peptides, plasmid DNA (pDNA), 
oligonucleotides (ONs), nanoparticles and liposomes (reviewed in Ramsey and 
Flynn 2015). CPPs are highly promising candidates for drug delivery applica-
tions due to low cytotoxicity and minimal risk of triggering immune response. 
 The capacity of certain proteins to overcome plasma membrane barrier was 
discovered more than 25 years ago when transcription-transactivating (Tat) pro-
tein of HIV-1 was shown to bypass the plasma membrane and translocate into 
the nuclei of cells (Frankel and Pabo 1988). Soon after, the cellular uptake of 
Drosophila Antennapedia homeodomain was reported (Joliot et al. 1991), and a 
few years later the domains being responsible for the cellular internalization of 
the two named proteins were identified (Derossi et al. 1994, Vives et al. 1997). 
  To date, there are more than 1800 CPPs and their chemically modified ana-
logues characterized according to CPPsite 2.0, and the number is still increasing 
(Agrawal et al. 2016). Although different in their origin and primary structure, 
CPPs have several common properties. For example, CPPs are typically linear 
and possess a positive net charge at physiological pH.  
 
 

1.1.1. Classification of CPPs 

There is no uniform system developed for the classification of CPPs. Most com-
monly, CPPs are divided by their origin into protein derived, chimeric or synthetic 
peptides. However, this classification does not provide information about their 
chemical and physical properties. Alternatively, CPPs can be classified into primary 
amphipathic, secondary amphipathic and non-amphipathic CPPs. This classification 
is based on the membrane interaction properties of CPPs with model cell 
membranes, which differ in lipid affinities, structural conformations during 
membrane binding, and internalization efficacies (reviewed in Ziegler 2008).  
 Primary amphipathic CPPs contain sequential cationic and hydrophobic 
regions in their primary structure. Typically, primary amphipathic CPPs are 
composed of more than 20 amino acid residues, enough to reach the hydropho-
bic core of the lipid bilayer of the plasma membrane (Wimley 1994). Primary 
amphipathic peptides strongly associate with both neutral and anionic mem-
brane lipids (Magzoub et al. 2001, Deshayes et al. 2004), mainly through hydro-
phobic interactions (Magzoub et al. 2001). The presence of anionic lipids in 
membrane does not affect the membrane affinity of these peptides (Barany-
Wallje et al. 2007, Yandek et al. 2007) and several primary amphipathic pep-
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tides such as transportan (TP) and MPG can be internalized by cells at sub-
micromolar concentrations (Barany-Wallje et al. 2007). Other well-known pep-
tides belonging to this group are Pep-1 (Morris et al. 2001) and transportan 10 
(TP10) analogues PepFects (PFs) and NickFects (NFs) (El-Andaloussi et al. 
2011, Ezzat et al. 2011, Oskolkov et al. 2011). 
 Secondary amphipathic peptides contain alternately hydrophobic and cationic 
amino acid residues and gain amphipathicity through association with membrane 
lipids and glycosaminoglycans, resulting the separation of uncharged amino acid 
residues from charged ones, and acquisition of alpha-helix (Dathe et al. 1996, 
Lamaziere et al. 2007, Crombez et al. 2009) or beta-sheet (Oehlke et al. 1997) 
conformation. Secondary amphipathic CPPs have low affinity to electrically 
neutral membranes, but the affinity increases significantly in the presence of 
anionic lipids in the plasma membrane (Dathe et al. 1996, Magzoub et al. 2001). 
Some of the well-known secondary amphipathic CPPs are penetratin (Derossi et 
al. 1994), CADY (Crombez et al. 2009) and MAP (KLAL) (Oehlke et al. 1998). 
 Non-amphipathic CPPs are typically shorter than amphipathic CPPs and are 
composed of mainly cationic amino acids. Non-amphipathic CPPs associate 
only with membranes which have high excess of anionic lipids (Magzoub et al. 
2001) and in line with secondary amphipathic CPPs, these are not able to inter-
nalize into cells at low (sub-micromolar) concentrations (Ziegler et al. 2003, 
Tiriveedhi and Butko 2007). The most well-known non-amphipathic CPPs are 
Tat peptide and oligoarginines. The efficacy of arginine-rich CPPs comes from 
the guanidine group of arginine which forms hydrogen bonds with anionic 
membrane lipids (Mitchell et al. 2000). 
 
 

1.1.2. Coupling of cargo to CPP 

In principle, two distinct approaches can be employed for coupling CPPs to mole-
cules to be delivered into cells – covalent and non-covalent strategy. In case of 
covalent conjugation, CPP is attached to the cargo by formation of covalent (often 
disulfide) bond. Disulfide bond is dissociated in the reducing environment of 
cytoplasm, thereby releasing the cargo (Muratovska and Eccles 2004). This 
approach leads to the formation of well-defined CPP-cargo conjugates. In case of 
non-covalent strategy, the association of CPP to cargo occurs mainly through 
electrostatic and hydrophobic interactions. The non-covalent strategy has 
numerous advantages over covalent conjugation. Firstly, co-incubation is simpler 
and less time- and money-consuming than covalent coupling. Secondly, since 
lower CPP and cargo concentrations are needed for yielding high bioactivity of 
cargo, non-covalent coupling could less probably lead to undesired side effects. 
Moreover, for some bioactive molecules (e.g. pDNA), only co-incubation can be 
used for coupling the cargo to CPP. Nevertheless, there are obstacles that impede 
the implementation of non-covalent strategy in biomedicine. One of the biggest 
challenges is the complicated characterization of the forming CPP/cargo 
nanocomplexes/nanoparticles (NPs). Yet, for implementation in biomedicine, the 
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production of NPs of defined properties, precise dimensions, and high mono-
dispersity need to be ensured. 
 
 

1.2. Cellular delivery of nucleic acids  
by CPPs using non-covalent strategy 

1.2.1. Plasmid DNA (pDNA) 

The delivery of recombinant plasmid DNA (pDNA) which contains a thera-
peutic gene is the most comprehensively examined approach for gene regula-
tion. Fermentation of bacterial cultures enables the production of pDNA in large 
quantities. More importantly, the transfection of cells with recombinant plasmid 
enables high and long-term expression of properly folded and post-translation-
ally modified proteins. 
 For the expression of therapeutic genes from pDNA the cellular uptake, 
endosomal release, dissociation from the carrier molecule, and translocation 
into the nuclei of cells need to be ensured. pDNA can only be coupled to CPP 
via co-incubation strategy. There are numerous reports of efficient delivery of 
pDNA (Table 1) or pDNA-loaded nanoparticles (Huang et al. 2007) by CPPs, 
yielding high levels of gene expression in cells and/or in animals. In 1999, Mor-
ris et al. provided the first data of efficient cellular delivery of pDNA by CPPs 
(Morris et al. 2001). In these experiments primary amphipathic MPG peptide 
which contains a nuclear localization signal (NLS) in its primary sequence me-
diated the internalization of pDNA into various cell-lines including HS-68 and 
NIH 3T3 fibroblasts, C2C12 myoblasts, HeLa and Cos-7 cells, and importantly, 
yielded high expression levels of delivered gene without decreasing the viability 
of cells even at 10 µM peptide concentration. 
 
 
Table 1. Examples of CPP-mediated plasmid DNA delivery using co-incubation strategy. 
 

CPP/delivery system Cells/tissue Reference 
Primary amphipathic CPPs 
MPG HS-68 and NIH 3T3 

fibroblasts, C2C12 
myoblasts, COS-7 cells, 
human CEM-SS 
lymphoblasts  

Morris et al. 1999 
 

MPG Human fibroblasts HS-68, 
HeLa 

Simeoni et al. 2003 

Pep-3 HeLa, HUVEC, Jurkat T, 
PC3, MCF-7, athymic nude 
mice 

Morris et al. 2007 

PF14 CHO, HEK293, U87, 
U2OS, MEF, THP-1 

Paper I 

NF51, NF1 HeLa Paper III 
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CPP/delivery system Cells/tissue Reference 
Arginine-rich CPPs 
Stearyl-R8, Stearyl-Tat, 
Stearyl-FHV 

Cos-7 Futaki et al. 2001 

Branched Tat peptide 
(8Tat) 

Cos-1, PC-3, 9L, 3T3, 
murine cardiac endothelial 
cells 

Tung et al. 2002 

Tat48-60 (C-terminal 
cysteinamide) 

CHO-K1, pgsA-745, pgsB-
618, human embryonic lung 
fibroblasts (HFL-1) 

Sandgren et al. 2002 

Tat47-57  Human hepatoma cells 
HepG2, CHO1, buffalo 
green monkey cells  

Ignatovich et al. 2003 

Tat2-4 complexed with 
DNA followed by 
addition of cationic 
polymer (e.g. PEI) 

Human bronchoepithelial 
cells 16HBE14o-, Cos-7 

Rudolph et al. 2003 

MEND-Stearyl-R8 NIH3T3 Kogure et al. 2004 
Stearyl-R8 NIH3T3 Khalil et al. 2004 
Tat-PEG-PEI Mouse lungs Kleemann et al. 2005 
(RxR)4, Stearyl-(RxR)4 CHO, HEK Lehto et al. 2010 

 
 
Several arginine-rich CPPs such as Tat peptide and oligoarginines have been 
employed for the delivery of pDNA into cells. Futaki et al. demonstrated that 
stearylation of oligoarginines, Tat and FHV peptide induces high expression of 
delivered luciferase encoding pDNA in Cos-7 cells (Futaki et al. 2001). The 
obtained expression level was similar to that of commercial transfection reagent 
LipofectamineTM 2000 (LF2000). Efficient transfection of cells by modified 
(e.g. branched) or cationic polymer-conjugated Tat peptide complexed with 
pDNA has been later reported in several studies (Sandgren et al. 2002, Tung et 
al. 2002, Ignatovich et al. 2003, Rudolph et al. 2003, Kleemann et al. 2005). 
However, in contrary to promising in vitro experiments, Ignatovich et al. found 
that Tat47-57/pDNA complexes induced significantly lower gene expression level 
of transferred gene after systemic administration of mice compared to the injec-
tion of naked pDNA (Ignatovich et al. 2003). The low gene expression level 
was probably caused by the inactivation of pDNA/Tat complexes in blood-
stream due to interactions with serum albumin. Kleemann et al. used PEGylated 
(PEG) Tat peptide conjugated to polyethyleneimine (PEI) (Tat-PEG-PEI) to 
deliver pDNA into human lung epithelial cell line A549 and lungs of C57BL/6 
mice (Kleemann et al. 2005). Interestingly, Tat-PEG-PEI mediated pDNA 
delivery led to significantly lower gene expression levels in A549 cells com-
pared to PEI-mediated pDNA. The lower level of gene expression was probably 
obtained due to aggregation of PEI/pDNA complexes in presence of sodium 
chloride which sedimented on the surface of cells, and in turn, increased the 
cellular uptake of complexes. Tat-PEG-PEI forms smaller and more stable 
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complexes with pDNA which do not aggregate, and thus, reach the bottom of 
the well plates, resulting in lower cellular uptake and lower gene expression 
compared to PEI-pDNA (Kleemann et al. 2005). The in vivo experiments, how-
ever, proved the opposite, and intratracheal instillation of Tat-PEG-PEI/pDNA 
complexes led to more than 600% higher transfection efficiency in mice lungs 
compared to PEI or Tat/PEI. Tat-PEG-PEI/pDNA complexes were detected in 
epithelial cells of the bronchi and alveoli of mice. Thus, covalent coupling of 
Tat to PEI via PEG is advantageous in gene delivery applications into lung epi-
thelial cells of living mice (Kleemann et al. 2005).  
 
 

1.2.2. Splicing switching oligonucleotides (SSOs) 

In eukaryotes, pre-mRNA splicing is an important gene regulation mechanism. 
More than 90% of human protein-coding genes undergo alternative splicing, a 
process in which particular exons can be either included into or excluded from 
the final mature mRNA (Pan et al. 2008, Wang et al. 2008). Alternative splicing 
tremendously increases the biodiversity of transcriptome which in turn enables 
the synthesis of wide variety of protein isoforms from a single gene. Disruptions 
of alternative splicing can lead to disease. According to Human Gene Mutation 
Database about 10% of all mutations causing human inherited diseases are 
caused by single-base pair substitutions in splice-sites (Stenson et al. 2014). 
Importantly, the modulation of pre-mRNA towards correct aberrant splicing can 
be achieved by the intracellular delivery of short antisense oligonucleotides, 
termed splice switching oligonucleotides (SSOs). 
 In 1998, Kang and Kole introduced HeLa pLuc 705 cell-line to enable 
quantitative evaluation of efficacies of transfection reagents developed for the 
delivery of SSOs (Kang et al. 1998). HeLa pLuc 705 cells are stably transfected 
with a recombinant plasmid which contains luciferase-coding gene interrupted 
by a mutated intron 2 of β-globin gene. The mutant intron of β-globin causes 
aberrant splicing of luciferase pre-mRNA which results the synthesis of non-
functional luciferase. Luciferase activity can be restored using SSOs which bind 
to the aberrant splicing site. 
 Most of the studies using CPPs for the cellular delivery of SSOs have em-
ployed HeLa pLuc 705 cells (Table 2). The first report of efficient delivery of 
SSO/CPP complexes was published by Ülo Langels group in 2009 (Mäe et al. 
2009). In this study SSO delivery into cells by TP10, stearyl-TP10 (st-TP10), 
nona-arginine and penetratin was examined. Despite effective intracellular de-
livery of SSOs by TP10 and penetratin the observed splice correction activity 
was only slightly higher compared to the activity of naked SSO. Using st-TP10 
the splice correction activity increased by approximately a factor thirty. Similar 
luciferase expression level was achieved using LF2000. However, co-incubation 
of st-TP10 with endosomotropic agent chloroquine led to even higher splice 
correction activity than that of LF2000. Stearylation did not have significant 
impact on the splice correction activity of nona-arginine or penetratin (Mäe et 
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al. 2009), although stearylated-oligoarginines have been earlier shown as effi-
cient transfection reagents (Futaki et al. 2001, Tönges et al. 2006). 
 
 
Table 2. Examples of CPP-mediated SSO delivery. 
 

CPP/delivery system Cells/tissues Reference 
Non-covalent strategy   
St-TP10 HeLa pLuc 705 Mäe et al. 2009 
St-(RxR)4  HeLa pLuc 705 Lehto et al. 2010 
S413-PV complexed 
with cationic liposomes 

HeLa pLuc 705 Trabulo et al. 2010 

PF14 HeLa pLuc 705,  
mouse mdx myotubes 

Ezzat et al. 2011 

NF1, NF2 HeLa pLuc 705 Oskolkov et al. 2011 
NF51 HeLa pLuc 705 Paper III 
Covalent strategy   
R6-penetratin HeLa pLuc 705 Abes et al. 2007 
Pip5e, 6a-h Mdx mouse myotubes, mdx mice Betts et al. 2012 

 
 
Recently, chemically modified st-TP10 analogues, PepFects (PFs) and Nick-
Fects (NFs) were designed to enhance the cellular uptake and endosomal release 
of nucleic acids (El-Andaloussi et al. 2011, Ezzat et al. 2011, Oskolkov et al. 
2011). NickFect 1 (NF1) and NickFect 2 (NF2) were modified by the addition 
of phosphoryl group to the primary sequence of the CPPs. It was hypothesized 
that phosphoryl group could on one hand induce better endosomal release due to 
pH-responsiveness, and on the other, change the properties of the NF/SSO 
nanocomplexes which could enhance the dissociation of the cargo from CPP in 
cytoplasm of cells. Indeed, phosphorylation significantly increased the splice 
correction efficacy. Remarkably, NF1 and NF2 were at least 3 times more effi-
cient compared to LF2000. Moreover, the addition of chloroquine increased the 
splice correction activity only about 20–30% (Oskolkov et al. 2011). Another 
st-TP10 analogue PepFect14 (PF14), which has ornithines and leucines instead 
of lysines and isoleucines in the primary structure, is also an efficient delivery 
vector for SSOs (Ezzat et al. 2011). PF14-mediated SSO delivery yielded >85% 
of splice correction in HeLa pLuc 705 cells after 24 h of transfection as evalu-
ated by the measurement of corrected mRNA levels after conducting RT-PCR 
analysis. The splice correction activity was also measured in H2K mdx mouse 
myotubes which is a commonly used cell-model for the examination of drug 
candidates and drug delivery systems for the treatment of Duchenne muscular 
dystrophy. H2K mdx mouse myotubes carry a point mutation in exon 23 of the 
dystrophin gene which results the synthesis of non-functional protein. Im-
portantly, PF14/SSO nanocomplexes yielded high level of splicing correction in 
both serum-free and serum-containing tissue culture medium. 
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 The cellular delivery of SSOs by CPPs using noncovalent strategy has been 
seldom applied for splicing redirection, and vast majority of studies have fo-
cused on the application of CPP-SSO covalent conjugates. The groups of M.J. 
Gait and B. Lebleu have made a strong contribution to the field by developing a 
series of R6-penetratin-derived CPPs, termed PiP peptides for the delivery of 
covalently coupled SSOs (Abes et al. 2007, Betts et al. 2012). Pip-SSO conju-
gates were specifically developed for the treatment of Duchenne muscular dys-
trophy. The most promising of the designed peptides is Pip6a which currently 
undergoes comprehensive preclinical research (Betts et al. 2012). Pip6a-SSO 
triggered high level of exon skipping in both cell based assays (Lehto et al. 
2014) and in mdx mice (Betts et al. 2012, Betts et al. 2015). In addition to skele-
tal muscle, significant splice correction was measured in cardiac muscle of mdx 
mice after systemic administration (Betts et al. 2012). 
 
 

1.2.3. Short interfering RNA (siRNA) 

RNA interference (RNAi) is a powerful technology for gene silencing by de-
grading target mRNAs which are complementary to antisense strands of ad-
ministered double-stranded short interfering RNAs (siRNAs). The RNAi ap-
proach has various advantages over small molecule drugs. RNAi enables the 
suppression of one or more transcripts with high selectivity, and importantly, 
the approach is applicable for almost all transcripts of the genome. 
 The first peptide vector employed for the delivery of siRNA by co-incuba-
tion strategy was MPG (Simeoni et al. 2003). MPG/luc-siRNA complexes in-
duced 80–85% of luciferase downregulation in HeLa and Cos-7 cells which had 
previously been transfected with luciferase-encoding plasmid (Table 3). Using 
MPG peptide without NLS (MPGΔNLS) the suppression of luciferase was even 
stronger, and reached to 90%. Later, MPG-8, a shorter version of MPG effi-
ciently mediated the delivery of cyclin B1 siRNA into prostate carcinoma cell 
PC3-xenografted mice (Crombez et al. 2009). Reduction of tumour growth by 
75% was observed using 0.05 mg/kg of siRNA, and complete removal of tu-
mour was observed by using 0.25 mg/kg of siRNA. The inhibition of tumour 
growth was sequence-dependent since mutated form of cyclin B1 was unable to 
impair tumour growth. siRNA delivery by PF6 has also been evaluated in ani-
mals (El-Andaloussi et al. 2011). In this study mice stably expressing luciferase 
in liver were treated with PF6/luc-siRNA (1 mg/kg) and assayed over 15 days. 
PF6/siRNA treatment diminished luciferase expression for 2 weeks, reaching 
the maximum suppression (about 75%) by day 5. 
 Oligoarginines have also been used for the siRNA delivery by co-incubation 
strategy (Kim et al. 2006, Tönges et al. 2006, Kumar et al. 2007, Nakamura et 
al. 2007). For example, Tönges et. al demonstrated an effective downregulation 
of EGFP reporter gene in EGFP-expressing hippocampal neurons by st-
R8/EGFP-siRNA nanocomplexes. Later, Cholesteryl-R9 was used to deliver 
vascular endothelial growth factor (VEGF) siRNA into tumour-bearing mice. 
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Impairing the function of VEGF has been previously suggested to inhibit tu-
mour growth and metastasis by preventing its vascularization (Holash et al. 
1999, Brekken and Thorpe 2001). Indeed, cholesteryl-R9/VEGF-siRNA signifi-
cantly decreased tumour growth due to the antiangiogenic effect of VEGF-
siRNA (Leung et al. 1989, Kim et al. 2006). Another study showing the high 
potency of CPP-mediated siRNA delivery in vivo used rabies virus glycoprotein 
(RVG) added to the carboxy-terminus of nona-arginine (Kumar et al. 2007). 
RVG is a short peptide which enables the transvascular delivery of siRNAs into 
brain. GFP-transgenic mice were injected with nanocomplexes on three consec-
utive days and two days after the last administration GFP expression was meas-
ured in their brain, spleen and liver. The GFP expression decreased about 50% 
in the brains of GFP-siRNA/R9-RVG treated mice, whereas no significant re-
duction was detected in liver or spleen. These results indicate that R9-RVG 
peptide enables transvascular delivery of siRNA to the central nervous system 
with high specificity. 
   
 
Table 3. Examples of CPP-mediated siRNA delivery using co-incubation strategy. 
 

CPP/delivery system Cells/tissues Reference 
Primary amphipathic CPPs 
MPG, MPGΔNLS HeLa, Cos-7, HS-68 Simeoni et al. 2003 
MPGα HeLa-TetOff, 293T cells, 

ECV304, ECV-GFP-Nuc 
Veldhoen et al. 2006 

MPG-8 HeLa, PC3 xenografted mice Crombez et al. 2009 
PF6 Hepatoma, MEF, HUVEC, 

mESC, mice 
El-Andaloussi et al. 
2011 

Secondary amphipathic CPPs
CADY HUVEC, THP1, mouse 3T3 

cells 
Crombez et al. 2009 

Arginine-rich CPPs 
Stearyl-R8 EGFP-expressing hippo-

campal neurons 
Tönges et al. 2006 

Chol-R9 Tumor-bearing mice Kim et al. 2006 
R8-MEND HeLa Nakamura et al. 2007 
RVG-9R GFP-transgenic mice Kumar et al. 2007 
EB1 HeLa, HepG2 Lundberg et al. 2007 
Tat-DRBD H1299, HUVEC, Jurkat T, 

hESC 
Eguchi et al. 2009 

   
 
In 2009, the group of S. Dowdy introduced Tat-DRBD fusion protein for intra-
cellular delivery of siRNA (Eguchi et al. 2009). The constructed fusion protein 
contained a single double-stranded RNA binding site with high affinity to 
siRNA (Bevilacqua and Cech 1996, Ryter and Schultz 1998, Tian et al. 2004). 
Tat-DRBD induced high RNAi response in various cell-types including hard-to-
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transfect primary T-cells, HUVEC and hES cells. To evaluate the in vivo 
potency of Tat-DRBD-mediated siRNA delivery, ROSA 26 mice expressing 
luciferase in the nasal and tracheal passages (Safran et al. 2003) were used. The 
transfection of Tat-DRBD/Luc-siRNA led to about 50% of reduction of 
luciferase expression already at the first day of experiment. The luciferase ex-
pression was recovered by day 15 (Eguchi et al. 2009). 
 
 

1.2.4. Antisense oligonucleotides (ASOs) 

Antisense oligonucleotides (ASOs) are short (15–20 bases) single-stranded 
oligonucleotides which bind to their complementary mRNA or miRNA sequences 
in cellsʼ cytoplasm. The downregulation of target RNA can be caused by either 
sterically hindering the binding of ribosomal subunits on the RNA molecule or by 
recruiting of ubiquitous enzyme RNaseH which degrades the RNA strand from 
the RNA-DNA duplex (reviewed in Bennett and Swayze 2010). 
 The application of ASOs for gene regulation is a popular approach in the 
field of CPPs, but the number of studies using non-covalent strategy has re-
mained very limited. The first report dates back to 1997, when the group of G. 
Divita and F. Heitz reported the cellular uptake of primary amphipathic peptide 
MPG/ASO noncovalent complexes (Morris et al. 1997) (Table 4). Peptides 
from the Pep family of CPPs have perhaps proved to be most promising candi-
dates in this field. Pep-2 and Pep-3 are primary amphipathic peptides which 
have shown to induce significant downregulation of target gene by intracellular 
delivery of antisense oligonucleotides (Morris et al. 2004, Morris et al. 2007). 
Importantly, the intratumoural injection of 5 µg of anti-cyclin B1 HypNA-
pPNA/Pep-3 nanocomplexes into tumour-bearing mice inhibited tumour growth 
>92%. In contrast, intravenous administration of the nanocomplexes suppressed 
tumour growth only by 20%. However, modification of the N-terminus of Pep-3 
with PEG increased tumour inhibition upon systemic administration to >90% 
(Morris et al. 2007). Regrettably, this delivery system has not yet found wide-
spread application. 
 
 
Table 4. Examples of CPP-mediated delivery of ASOs using co-incubation strategy. 
 

 CPP/delivery system Cells/tissues Reference 
MPG HS68, NIH-3T3 Morris et al. 1997 
Pep-2 HeLa, HS68, HEK293 Morris et al. 2004 
Pep-3 HUVEC, Jurkat T, MCF-7, PC3, 

PC3 xenografted mice 
Morris et al. 2007 
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1.3. Characterization of CPP/nucleic acid nanocomplexes 
and their cell-surface association  

1.3.1. Characterization of nanocomplexes 

The non-covalent strategy of coupling CPPs to nucleic acid molecules relies 
mostly on electrostatic and hydrophobic interactions between positively charged 
CPP and negatively charged cargo which result the formation of nano-
complexes/nanoparticles (NP). In order to be considered for implementation in 
biomedical research and medicine the characteristics of CPP/nucleic acid NPs 
such as size, shape and charge need to be characterized in detail. 
 One of the most important characteristics of nanoparticles designed for drug 
delivery is their size. Size determines the cellular uptake efficacy of NPs. Vari-
ous studies have demonstrated that smaller nanoparticles are internalized by 
cells more efficiently compared to larger particles (Prabha et al. 2002). For 
example, transfection of Cos-7 cells with luc-pDNA-loaded nanoparticles with a 
diameter of 70 nm yielded 27-fold higher luciferase expression compared to 
larger (d=200 nm) nanoparticles (Prabha et al. 2002). The size limit of nano-
particles that can be engulfed varies by cell type. While some cell types (e.g. 
HUVEC, ECV 304, HNX 14C) are able to internalize nanoparticles with large 
size range (20 nm–1 µm), others (e.g. Hepa 1–6 and HepG2) are not capable of 
engulfing larger particles than 100 nm in diameter (Zauner et al. 2001). The 
optimal diameter for receptor-mediated endocytosis is 50–60 nm (Chithrani et 
al. 2006, Chithrani and Chan 2007, Zhang et al. 2009) and the upper limit is 
about 200 nm in diameter. Larger nanoparticles can be internalized by macro-
pinocytosis, which is typically a signal-dependent process, but in some cells 
such as antigen-presenting cells occurs constitutively (Norbury et al. 1995, 
Sallusto et al. 1995, Norbury et al. 1997). 
 The size of NPs plays an important role in dictating the circulation half-life 
and biodistribution of NPs in vivo. For example, smaller (d= 10–15 nm) nano-
particles show higher distribution in tissues compared to larger (d= 50–200 nm) 
NPs (De Jong et al. 2008, Sonavane et al. 2008).  
 Interestingly, shape can also influence the cellular uptake efficacy of nano-
particles. Chitrani et. al showed that spherical gold-nanoparticles were inter-
nalized by HeLa cells more effectively compared to their rod-shaped counter-
parts (Chithrani et al. 2006). One reason behind this could be that rod-shaped 
NPs bind more cell-surface receptors when the longitudinal axis of the NP in-
teracts with the cell surface, which could result in less available binding sites 
(Chithrani et al. 2006). However, these differences could have been caused by 
the different amounts of coating material on the surface of NPs. Shape may 
have an impact on the circulation half-life of NPs. Geng et al., showed that fil-
amentous polymer micelle assemblies (filomicelles) persist in vascular circula-
tion of rodents up to one week – about ten times longer compared to their 
spherical counterparts (Geng et al. 2007). 
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 Zeta (ζ) potential, the electrical potential between ions bound to a particle 
and ions which remain in the surrounding solution, is another important param-
eter which influences the cell association and cellular uptake mechanism of 
nanoparticles. ζ-potential of NPs depends on the surrounding solution, and 
therefore it is important to measure it in relevant medium. Positively charged 
nanoparticles are believed to interact with the plasma membrane of cells via 
cell-surface proteoglycans, and internalized by various mechanisms (Padari et 
al. 2010). Negatively charged nanoparticles, however, can be internalized via 
binding to specific cell-surface receptors (Ezzat et al. 2012, Juks et al. 2015) as 
to be discussed in the next chapter. Neutral and negatively charged NPs show 
lower adsorption of serum proteins, resulting in longer circulation times (Alexis 
et al. 2008). In contrast, cationic nanoparticles can be more easily released from 
endosomes compared to anionic or neutral NPs (Nel et al. 2009). 
 In tissue culture medium or in blood colloidal particles typically absorb 
some amount of proteins to their surface, forming a “protein corona”. The com-
position of the protein coat depends on the properties of NPs, for example their 
surface chemistry, charge and size (Nel et al. 2009). “Protein corona” plays an 
important role in the association of NPs with the plasma membrane, their cellu-
lar uptake and intracellular trafficking (Walkey et al. 2014). Moreover, the bind-
ing of specific proteins can dictate the biodistribution or clearance of NPs. For 
example, attached plasma proteins (e.g. complement factors, coagulation pro-
teins, immunoglobulins) can be recognized by phagocytes, which could result 
the engulfment of NPs and their degradation (reviewed in Owens and Peppas 
2006). 
 Stability of nanoparticles is also an important parameter which defines the 
efficiency of a drug delivery vehicle. Nanoparticles should be stable in blood 
circulation in order to protect the encapsulated cargo from degradation and to be 
able to mediate their cellular uptake. However, once in cytoplasm, the release of 
cargo from carrier is essential for triggering the bioactivity of delivered mole-
cule. 
 The group of R. Brock recently performed a detailed analysis of the mole-
cular and physicochemical properties of CPP/siRNA nanoparticles (van Asbeck 
et al. 2013). Interestingly, the dynamic light scattering (DLS) analysis revealed 
that in case of some peptides (TP10, Tat, PF6, hLF) the size of nanocomplexes 
depended on the used molar ratio (MR) of CPP and siRNA, whereas others (R9, 
r9-hLF, PF14) did not show such correlation. In the former case, individual 
peptides had different behaviours. For example, TP10 did not form NPs beneath 
MR 20, but aggregated at high (MR 30 and beyond) molar ratios. PF6, however, 
formed largest particles (about 200 nm) at MR 15 and at lower (MR 5) or higher 
(MR 30–40) molar ratios smaller (about 100 nm) particles were formed. In the 
latter case, the nanocomplexes had a size ranging from 150–200 nm. In addi-
tion, the analysis revealed that the size of CPP/siRNA nanocomplexes increased 
2–3 fold when the complexes were incubated in physiological salt solution or in 
a tissue culture media, whereas the addition of serum yielded smaller complexes 
that were comparable with the ones obtained in salt-free conditions. All studied 
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CPP/siRNA nanocomplexes had a positive ζ-potential when formed in water, 
but obtained slightly negative charge after addition of serum-containing media, 
probably due to association with negatively charged serum proteins. Moreover, 
the stability of CPP/siRNA NPs was analysed using heparin replacement assay. 
Heparin is highly anionic compound which resembles anionic cell-surface hepa-
ran sulfate proteoglycans. The addition of heparin could disintegrate the 
CPP/siRNA NPs due to strong affinity to CPP. There was a strong correlation 
between the charge of CPP and the stability of complexes in the presence of 
heparin, and higher charge of CPP led to higher resistance to heparin replace-
ment. In addition, the stability of CPP/siRNA NPs in the presence of serum was 
analysed by gel retardation assay. The analysis revealed the disintegration of 
complexes formed with cationic CPPs Tat, R9 and hLF already after 1 h of in-
cubation with serum as indicated the free siRNA fraction. TP10/siRNA com-
plexes were slightly more resistant compared to cationic CPPs, and PF6 and 
PF14 nanoparticles with siRNA were highly stable in the presence of serum 
even after 20 h of incubation (van Asbeck et al. 2013). 
 
 

1.3.2. Cell-surface interactions of CPP/nucleic  
acid nanocomplexes 

The initial associations of CPPs and CPP/cargo complexes with cells have been 
proposed to occur through anionic disaccharide units of glycosaminoglycans 
(GAGs). Various studies have shown that in cells which lack all GAGs or hepa-
ran sulfates the cellular uptake of CPPs is drastically decreased or completely 
abolished (Tyagi et al. 2001, Richard et al. 2005, Nakase et al. 2007, Padari et 
al. 2010). For arginine-rich CPPs the association with GAGs only at high pep-
tide concentrations (above 1 µM) has been proposed (Jiao et al. 2009). The 
association of CPPs with GAGs can activate cell signalling cascades. For ex-
ample, the association of MPG/oligonucleotide complexes with GAGs has been 
demonstrated to activate Rho/Rac GTPase, leading to cytoskeletal remodelling 
and triggering of macropinocytosis (Gerbal-Chaloin et al. 2007, Nakase et al. 
2007). Although it is well-established that GAGs are the first contact site for 
CPPs and CPP/cargo complexes, recent studies have found that the initial cell-
surface associations can involve diverse mechanisms, and simple electrostatic 
interactions of CPP or CPP/cargo with cell surface proteoglycans do not neces-
sarily apply invariably. For example, Gump et al. demonstrated that the cellular 
uptake of TAT peptide occurs via macropinocytosis, and the uptake is not abol-
ished in cells which lack heparan sulfates and sialic acid, indicating that these 
plasma membrane components are not required for Tat peptide cellular uptake 
(Gump et al. 2010). Instead, they proposed that a protein is needed for Tat inter-
nalization, because removal of cell-surface proteins with proteinase signifi-
cantly decreased the cellular uptake of Tat peptide. 
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 The association of CPP/nucleic acid NPs with cell-surface proteoglycans 
presumes that the nanoparticles possess a positive surface charge. This might 
apply to CPP/nucleic acid NPs which are formed in water, however, recent ob-
servations revealed that in a biorelevant media the nanocomplexes obtain nega-
tive ζ-potential (Oskolkov et al. 2011, van Asbeck et al. 2013). Thus, the 
association of CPP/nucleic acid NPs with the cell surface could not be ex-
plained simply by electrostatic interactions with negatively charged components 
of extracellular matrix. 
 Scavenger receptors, a large class of cell-surface glycoproteins are receptors 
for various ligands. To date, there are 10 classes (class A-J) of scavenger re-
ceptors identified (reviewed in Prabhudas et al. 2014). Two members of these, 
scavenger receptor class A (SCARA) receptors SCARA3 and SCARA5 have 
been shown to be involved in the cellular uptake of nucleic acids (Pearson et al. 
1993, Limmon et al. 2008, DeWitte-Orr et al. 2010) and nucleotide-functiona-
lized gold nanoparticles (Patel et al. 2010). Recently, Ezzat et al. demonstrated 
that SCARA3 and SCARA5 also serve as cell-surface receptors for negatively 
charged CPP/oligonucleotide nanocomplexes (Ezzat et al. 2012). The biological 
activity of PF14-delivered SSOs was drastically decreased in HeLa pLuc 705 
cells where SCARA3 and SCARA 5 were downregulated using inhibitory lig-
ands or RNAi approach. Furthermore, SCARA3 and SCARA5 co-localized 
with PF14/SSO nanocomplexes at the plasma membrane as revealed by TEM 
analysis. 
 
 

1.4. Cell entry mechanisms and intracellular trafficking  
of CPP/nucleic acid nanocomplexes 

1.4.1. Endocytosis 

Endocytosis is a process of cellular uptake of membrane components, fluids, 
solutes and macromolecules which cannot passively diffuse through the plasma 
membrane. Endocytosis is divided into phagocytosis and pinocytosis. Phago-
cytosis occurs only in specialized cells and involves the uptake of large partic-
les. Pinocytosis is divided into clathrin-dependent endocytosis (CME), caveo-
lin-dependent endocytosis, clathrin- and caveolin-independent endocytosis, and 
macropinocytosis (Fig. 1).  
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Figure 1. Schematic illustration of main endocytic pathways and intracellular traf-
ficking routes of endocytosed material. A, b, c refer to trafficking from early endo-
somes to recycling endosomes (a), trans-golgi network (b) or late endosomes (c). TEM 
images from different cell-lines were captured by the author of the thesis. 
 
 

1.4.1.1. Clathrin-mediated endocytosis 

Clathrin-mediated endocytosis (CME) is the most thoroughly examined endo-
cytic pathway, and it is active in all mammalian cells. In CME, the coat protein 
clathrin polymerizes at the plasma membrane and forms a clathrin-coated pit 
(CCP) which can ultrastructurally be identified by basket-like morphology and 
thick protein coat (Fig. 1). The size of CCPs in mammalian cells depends on 
cell type, but typically ranges from 100–150 nm in diameter. 
 CME is multifaceted endocytic pathway which is involved in the cellular 
internalization of various different cargos using numerous adaptor and acces-
sory proteins. The initiation of CME is not yet fully understood, but recent 
studies suggest the formation of nucleation module at the plasma membrane 
(Schmid et al. 2006). The nucleation module is formed by the binding of mem-
brane sculpting Fps/Fes/Fer/CIP4 homology (FCH) domain only proteins, epi-
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dermal growth factor (EGF) pathway substrate 15 and intersectins to phospha-
tidyl-4,5-bisphosphate (PtdIns(4,5)P2)-rich plasma membrane regions followed 
by binding of several other proteins (Stimpson et al. 2009, Henne et al. 2010). 
Subsequently, adaptor protein 2 (AP2) is recruited to the nucleation site where it 
binds directly to PtdIn(4,5)P2 and cell-surface receptors, and indirectly to cargo 
through association with accessory proteins (Collins et al. 2002, Kelly et al. 
2008). Additionally, various cargo-specific accessory proteins can be involved, 
and these are always bound to AP2 (Edeling et al. 2006, Schmid et al. 2006). 
Thereafter, clathrin triskelia are recruited to the plasma membrane, bind to AP2 
and polymerize, forming a basket-like invagination (reviewed in Kirchhausen 
2000). The budding of clathrin-coated vesicle (CCV) relies on the activity of 
large GTPase dynamin which is recruited to the CCP neck-region by BAR-do-
main containing proteins. Dynamin forms a helical polymer around the CCPs 
neck, and after GTP hydrolysis CCV is released (Herskovits et al. 1993, van der 
Bliek et al. 1993). Quickly after CCV is released, the clathrin lattice-structure is 
disassembled by ATPase heat shock cognate 70 and its cofactor auxillin releas-
ing clathrin to cytoplasm for reuse (Rothnie et al. 2011). The uncoated vesicle 
fuses with early endosomes and the cargo can be either recycled back to the 
plasma membrane or targeted to late endosomes and/or lysosomes (Fig. 1a,c). 
 CME is considered as the most significant contributor to the total endocytic 
flux in cultured cells (Bitsikas et al. 2014). CME is the internalization pathway 
for the majority of cell surface receptors and integral membrane proteins. In 
addition, several viruses exploit the pathway to gain entry to the cell (Lecot et 
al. 2005, Blanchard et al. 2006, van der Schaar et al. 2008). Besides controlling 
cellular uptake of numerous cell surface receptors, CME has other biological 
functions such as the maintenance of cellular homeostasis, growth control, cell 
differentiation and signal transduction regulation (reviewed in McMahon and 
Boucrot 2011). 
 The involvement of CME in CPP-mediated nucleic acid delivery has been 
mainly examined using pharmacological inhibitors of this pathway, chlorprom-
azine or potassium depletion in cells. Chlorpromazine leads to the translocation 
of AP2 and clathrin to endosomal membranes, depleting it from the cell surface. 
Potassium depletion causes the aggregation of clathrin in cytoplasm, and thus, 
prevents the formation of clathrin-coated pits at the plasma membrane (Larkin 
et al. 1983). Using these methods, CME was shown to be the main cell-entry 
pathway for PF6/SSO nanocomplexes (Hassane et al. 2011). 
 
 

1.4.1.2. Caveolin-mediated endocytosis 

Caveolin-mediated endocytosis occurs in most vertebrates. Caveolae are small 
(60–80 nm) flask-shaped invaginations. Two protein families are required for 
the formation of caveolae: caveolins and cavins. The morphology of caveolae 
can be distinguished from CCPs by smaller size, elongated shape and lack of 
thick protein coat (Palade 1953, Yamada 1955, Richter et al. 2008) (Fig. 1). 
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Caveolae form by oligomerization of caveolin at the cholesterol and sphingo-
lipid rich regions (“lipid rafts”) at the plasma membrane, and cholesterol is es-
sential for maintaining their structure (Rothberg et al. 1992). The concentration 
of cholesterol and certain glycosphingolipids and sphingomyelin is much higher 
in caveolae compared to other plasma membrane regions (Ortegren et al. 2004). 
Cytoplasmic cavin proteins oligomerize before associating with the plasma 
membrane where they function as stabilizators of caveolae. In addition to stabi-
lization, cavin proteins modulate the morphology and functions of caveolae 
(reviewed in Nassar and Parat 2015). Mammalian cells express three different 
types of caveolin proteins: caveolin-1, caveolin-2 and caveolin-3. Caveolin-1 
and caveolin-2 are expressed in all cell types except in neurons and leukocytes, 
and particularly high expression of these has been observed in adipocytes, endo-
thelial cells, smooth muscle cells and fibroblasts (Scherer et al. 1996, Scherer et 
al. 1997). Caveolin-3 is specific to cardiac and skeletal muscle cells (Way and 
Parton 1995, Song et al. 1996, Tang et al. 1996). 
 Caveolae play an important role in various cellular functions such as choles-
terol and lipid homeostasis, cellular signalling, transcytosis and endocytosis 
(reviewed in Parton and Simons 2007). In contrary to highly dynamic clathrin 
coated pits, caveolae are static structures, which can remain at the cell surface 
for long periods of time (Thomsen et al. 2002), however, their internalization 
can be induced by stimulation. Caveolin-mediated endocytosis plays an integral 
part in the cellular uptake of various growth factor receptors, viruses (e.g. Simi-
ani virus 40, Papilloma virus, polyoma virus, echovirus) and cholera toxin β 
subunit (CTxβ) (Kartenbeck et al. 1989, Anderson et al. 1996, Stang et al. 1997, 
Richterova et al. 2001). 
 In endothelial cells, caveolae are involved in transcytosis of internalized 
cargo to the underlying tissues (Palade and Bruns 1968, Ghitescu et al. 1986, 
Ge et al. 2008). In non-endothelial cells, however, the fate of internalized 
caveolae is less clear. For a long time it was suggested that internalized caveo-
lae can fuse with pH-neutral caveosomes in Rab5-independent manner or with 
early endosomes in Rab5-dependent manner. However, recently, a comprehen-
sive analysis of caveolin-1 trafficking revealed that endogeneous caveolin is 
directly directed to early endosomes (Hayer et al. 2010, Parton and Howes 
2010). This finding put the existence of caveosomes as distinct organelles under 
debate. Currently, it seems that in non-endothelial cells the cargoes internalized 
by caveolin-mediated endocytosis are destined to the classical endolysosomal 
pathway (Hayer et al. 2010, Parton and Howes 2010) (Fig 1c). Still, for example 
cholera toxin has been shown by TEM to enter endosomes and trans-Golgi net-
work instead of lysosomes of host cells (Joseph et al. 1979) (Fig 1b). 
 Using immunofluorescence microscopy, TEM and depletion of cholesterol 
from the plasma membrane, Choi et al. showed that spherical nucleic acids 
(SNAs) associate with the cell surface of C166 endothelial cells in lipid raft 
domains (Choi et al. 2013). Two common classes of molecules employing 
caveolin-mediated endocytosis for internalization into cells are cholera toxin β 
subunit and glycosylphosphatidylinositol (GPI)- anchored proteins. Pretreat-
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ment of cells with phosphatidylinositolphospholipase C which enzymatically 
cleaves GPI-anchored proteins from the cell-surface reduced the uptake of 
SNAs about 50%, indicating the role of caveolar endocytosis in the uptake of 
SNAs. The importance of caveolar endocytosis was further confirmed by using 
caveolin-1 deficient cells, which showed 60% reduction of SNA cellular uptake 
compared to control cells (Choi et al. 2013). Very recently, we found that the 
transfection activity of PF14/SCO nanocomplexes was reduced about 80% in 
HeLa cells pretreated with amiloride (inhibits macropinocytosis), and about 
30% in cells pretreated with nystatin (inhibits caveolin-mediated endocytosis) 
(Juks et al. 2015). Chlorpromazine which impedes CME did not affect the trans-
fection activity of PF14/SCO NPs. PF14/SCO NPs often co-localized with 
fluid-phase marker dextran at the cell surface. Inside cells the complexes were 
detected together with dextran in punctuate structures resembling endosomes, 
confirming the importance of macropinocytosis in the cellular uptake of 
PF14/SCO NPs. A fraction of PF14/SCO NPs also co-localized with caveolin-1 
at the plasma membrane within 30 min of incubation. In addition, suppression 
of caveolin-1 reduced the uptake of the complexes by about 40% compared to 
control cells. 
 

1.4.1.3. Macropinocytosis 

Macropinocytosis is an endocytic process which leads to the internalization of 
fluid and membranes in large vacuoles called macropinosomes. Constitutive 
macropinocytosis occurs only in specialized cells (e.g. dendritic cells) (Sallusto 
et al. 1995, Norbury et al. 1997, West et al. 2000, Bohdanowicz et al. 2013) but 
it can be induced by growth factors or other stimulants in the vast majority of 
cells (Haigler et al. 1979, Swanson 1989, Dowrick et al. 1993, Racoosin and 
Swanson 1993, Anton et al. 2003). Macropinocytosis is highly active in many 
types of cancer cells. An estimated 20% of all known types of cancer cells over-
express oncogenic Ras or Src proteins (Bos 1989) which induce macropinocy-
totic uptake of extracellular fluid, and thus, ensure the constant influx of nutri-
ents (Bar-Sagi and Feramisco 1986, Bar-Sagi et al. 1987, Amyere et al. 2000, 
Kasahara et al. 2007, Commisso et al. 2013). 
 Macropinocytosis is dependent on actin cytoskeleton which triggers struc-
tural changes in the plasma membrane resulting the formation of protrusions 
(lamellipodes or ruffles) at the cell surface which can fall back to the plasma 
membrane forming a large (d= 0.5–5 µm) fluid-filled macropinosome (Lewis 
1931) (Fig 1). Typically, macropinocytosis is initiated by the activation of 
receptor tyrosine kinases (RTKs) after external stimulation (Mercer and 
Helenius 2009). RTKs, in turn, activate Ras GTPases which initiate several 
signalling cascades involving Rac1, Rab5, Arf6 and phosphatidylinositol-3-
kinase (Bar-Sagi and Feramisco 1986, Bar-Sagi et al. 1987), resulting the for-
mation of lamellipodes and closure of macropinosome. P21-activated kinase 1 
(Pak1) regulates the dynamics and motility of cytoskeleton, and is also required 
in all stages of macropinocytosis (Dharmawardhane et al. 2000, Parrini et al. 
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2005, Liberali et al. 2008). Pak1 translocates to the plasma membrane after 
initiation of macropinocytosis, where it activates various effectors required for 
the formation of macropinosome (Galisteo et al. 1996, Even-Faitelson et al. 
2005, Mercer and Helenius 2008, Dharmawardhane et al. 1999). Protein kinase 
C and c-Src promote ruffling and macropinosome formation (Miyata et al. 
1989, Amyere et al. 2000, Kasahara et al. 2007). Other factors such as Na+/H+ 
exchangers and cholesterol play a role in macropinocytosis. Inhibition of 
Na+/H+ exchangers by amiloride or its analogue ethylisopropylamiloride (EIPA) 
impairs macropinocytosis and are commonly used for the inhibition of the 
pathway (Koivusalo et al. 2010). 
 Typically, macropinocytosis is a degradative endocytic pathway and after 
formation, macropinosomes acidify, acquire early endosomal markers Rab5 
and/or EEA1 followed by further acidification and acquiring late endosomal 
marker Rab7 (Fig. 1c). Eventually, macropinosomes fuse with lysosomes where 
internalized cargo is degraded (Racoosin and Swanson 1993). Thus, the cellular 
fate of macropinosomes is similar to classical endolysosomal pathway. Alt-
hough in vast majority of cell types, internalized cargo is destined to degrada-
tion, in some cells (e.g. A531 human carcinoma cells) the recycling of cargo 
from macropinosomes to plasma membrane has been demonstrated (Hewlett et 
al. 1994). Thus, the intracellular fate of macropinosomes depends on cell-type. 
 Numerous viruses e.g. vaccinia virus, herpes simplex virus 1, HIV-1 utilize 
macropinocytosis to gain entry into cells (Marechal et al. 2001, Mercer and 
Helenius 2008, Devadas et al. 2014). While some viruses use macropinocytosis 
to enter cells, others use diverse endocytic mechanisms but require macropino-
cytosis to promote internalization (Meier et al. 2002). It is well-established that 
macropinocytosis plays an important role in the uptake of arginine-rich CPPs 
and their conjugates with nucleic acids (Nakase et al. 2004, Wadia et al. 2004, 
Kaplan et al. 2005, Nakase et al. 2007). However, its involvement in the 
internalization of CPP/nucleic acid non-covalent complexes is far less exam-
ined. In one study, R8-MEND, oligoarginine-modified liposomes encapsulating 
pDNA was shown to internalize cells via macropinocytosis. Interestingly, the 
cellular uptake route of R8-MEND/pDNA was dependent on the concentration 
of R8 used for the formation of liposomes, and clathrin-mediated endocytosis 
was employed at lower amounts of the peptide (Khalil et al. 2007). Recently, 
Nakase et al. demonstrated that by stimulating EGFR which activates macro-
pinocytosis significantly improves the cellular uptake of exosomes (Nakase et 
al. 2015). Macropinosomes are more leaky compared to other endosomes 
(Meier et al. 2002), and thus, this cellular uptake pathway is suggested to be 
advantageous for drug delivery applications. 
 
 

1.4.1.4. Other endocytic pathways 

In addition to extensively studied clathrin- and caveolin-mediated endocytosis 
and macropinocytosis less common endocytic pathways are used by cells to 
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internalize extracellular material. Some examples of these comprise flotillin-, 
GRAF1-, ARF6- and RhoA-dependent endocytosis. Commonly, these endo-
cytic pathways occur in cholesterol-rich lipid raft membrane domains of cells, 
and involve the formation of small (40–100 nm) flask shaped or tubular invagi-
nations (for a review see Doherty and McMahon 2009) (Fig 1). 
 Clathrin-independent carriers (CLICs) which deliver endocytosed material 
into GPI-anchored protein-enriched early endosomes (GEEC) have become an 
interesting topic in the research of endocytosis. This endocytic pathway was 
discovered in 2002 by Sabharanjak et al. who showed that GPI-anchored pro-
teins regulated by Cdc42 are taken up by cells in an dynamin-independent man-
ner, and the internalized small (d=50–80 nm) tubular and ring-like vesicles lack 
clathrin coat and are not enriched with caveolin (Sabharanjak et al. 2002). 
CLICs locate in lipid rafts, are sensitive to cholesterol depletion and require 
actin polymerization (Kirkham et al. 2005). CLICs mature into GEECs which 
can then fuse with early endosomes Rab-5 dependently or can be directly tar-
geted to other compartments such as Golgi complex (Kirkham et al. 2005). 
CLIC/GEEC pathway is involved in the uptake of GPI-anchored proteins, bac-
terial toxins and extracellular fluid (Lundmark et al. 2008). GRAF1 is a CLIC-
associating protein, which stabilizes the membrane curvature and can be used as 
a protein marker for this endocytic pathway (Lundmark et al. 2008). It is estab-
lished that small G-proteins from the Rho, ADP-ribosylation factor (ARF) and 
Rab families regulate the endocytic uptake by CLICs (Lamaze et al. 2001, 
Kirkham et al. 2005). Rho and Rac1 induce the cellular uptake of the interleu-
kin-2 receptor (Lamaze et al. 2001, Grassart et al. 2008), and cell division cycle 
42 (Cdc42) is required for the cellular uptake of GPI-anchored proteins 
(Sabharanjak et al. 2002). CTxβ and Helicobacter pylori vacuolating cytotoxin 
A are internalized by cells using CLIC/GEEC pathway (Gauthier et al. 2005). 
To date, there is no evidence that non-viral gene delivery vectors employ 
CLIC/GEEC pathway to gain access to the interior of cells.  
 Flotillin-mediated endocytosis was demonstrated when flotillin-1 was shown 
to mediate the cellular uptake of GPI-anchored proteins in Cos-7 cells by phos-
phorylation of Fyn kinase (Glebov et al. 2006, Riento et al. 2009). Later, Aїt-
Slimane et al. found that in HepG2 cells the uptake of GPI-anchored proteins 
occurs through the activity of flotillin-2 (Ait-Slimane et al. 2009). However, the 
latter finding could be associated with GRAF1 associated endocytosis. Flotillin-
1 (reggie 2) and flotillin-2 (reggie 1) predominantly localize at cholesterol-rich 
lipid membrane microdomains (“lipid rafts”), but also in intracellular compart-
ments such as late endosomes, recycling endosomes and exosomes (Salzer and 
Prohaska 2001, de Gassart et al. 2003, Kokubo et al. 2003, Santamaria et al. 
2005). Flotillin-induced membrane invaginations are small and typically flask-
shaped, morphologically similar to caveolar invaginations, except that these do 
not contain caveolin (Frick et al. 2007). The importance of dynamin in flotillin-
mediated endocytosis is still argued, and the data is often controversial (Glebov 
et al. 2006, Payne et al. 2007). In addition to endocytosis, flotillins have various 
other cellular functions, such as cell adhesion, signal transduction through 
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RTKs and cellular trafficking (reviewed in Zhao et al. 2011). Flotillins have 
been shown to be involved in the cellular internalization of polyplexes (Ver-
cauteren et al. 2011), proteoglycans and their ligands (Payne et al. 2007), and 
proteins (Glebov et al. 2006, Ait-Slimane et al. 2009). In one study the cellular 
uptake of DNA polyplexes was reported to depend on nucleolin and flotillin 
which co-lolocalized in lipid rafts at the surface of cells, suggesting that nucleo-
lin could be a cell-surface receptor for polyplexes (Chen et al. 2011). In another 
study DNA polyplexes were internalized into cells by two distinct pathways – 
flotillin-1-dependent endocytosis and phagocytosis-like mechanism – but only 
the former mechanism led to significant gene expression (Vercauteren et al. 
2011). 
 In addition to above-mentioned, ARF6- and Rho-dependent endocytosis 
have been suggested to act as distinct cellular uptake routes. ARF6 mediates the 
constitutive uptake and recycling of class I major histocompatibility complex 
molecules (Blagoveshchenskaya et al. 2002). ARF6-enriched endocytic vesicles 
are typically recycled back to the plasma membrane after fusion with sorting 
endosomes (Naslavsky et al. 2003). RhoA-dependent endocytosis is dynamin-
dependent, sensitive to cholesterol depletion and is regulated by Rho GTPase 
(Subtil et al. 1994, Subtil et al. 1997). RhoA is involved in the cellular uptake of 
IL2-R in lymphocytes (Subtil et al. 1994, Subtil et al. 1997). Interestingly, 
RhoA regulated endocytosis of amyloid β-peptide is essential for the neurotoxi-
city of the peptide which probably causes Alzheimer disease, and therefore 
could be of interest as a therapeutic target (Yu et al. 2010). Nevertheless, RhoA-
dependent endocytosis has remained the least examined endocytic pathway due 
to the low number of cargos utilizing the route. 
 Unfortunately, these clathrin- and caveolin- independent mechanisms of 
endocytosis are rarely examined as possible cell entry portals for drug delivery 
vectors.  
 

1.4.2. Direct translocation 

Some CPPs, for example, MPG (Simeoni et al. 2003, Deshayes et al. 2004), Pep 
peptides (Deshayes et al. 2004) and CADY (Crombez et al. 2009, Rydström et 
al. 2011) deliver nucleic acids into cells in an endocytosis-independent manner. 
Simeoni et al. demonstrated that MPG/luc-pDNA induced high luciferase ex-
pression in human fibroblasts (HS-68), and the luc-pDNA activity was not de-
creased in the presence of endocytosis inhibitors. In addition, incubation of 
MPG/luc-pDNA at 4ºC had only marginal effect on the luciferase activity 
(Simeoni et al. 2003). MPG peptide acquires β-sheet conformation after the 
formation of MPG/cargo complexes and the association with the plasma mem-
brane of cells. Thereafter, the complexes internalize into cells by formation of 
transient pore-like structure. After internalization, some cargo is released from 
the peptide due to the high affinity of the carrier to plasma membrane phospho-
lipids (Deshayes et al. 2004). Similar cellular uptake mechanism was proposed 
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for Pep-1/cargo nanocomplexes, but instead of β-sheet structure, Pep-1 acquires 
helical conformation upon interactions with the cell surface (Deshayes et al. 
2004). The conformational differences between the two peptides might deter-
mine the type of cargo that can be delivered into cells. MPG is more efficient 
for the delivery of nucleic acids whereas Pep-1 more suitable for the delivery of 
proteins and large peptides (Deshayes et al. 2004). 
 CADY peptide mediated siRNA delivery into cells also occurs indepen-
dently of endosomal inhibitors (Crombez et al. 2009, Rydström et al. 2011). 
Since endocytic inhibitors are not 100% specific for one pathway, additional 
experiments were conducted by incubating CADY/siRNA complexes in the 
presence of different endosomal markers in HeLa cells. CADY/siRNA com-
plexes did not co-localize with endocytic markers transferrin, Rab5 or caveolin. 
Instead, the complexes localized mainly in cytoplasm, as confirmed by electron 
microscopy analysis (Rydström et al. 2011). In addition, CADY/ siRNA com-
plexes were incubated in HeLa cells in the presence of sodium azide which 
inhibits mitochondrial oxidative phosphorylation. The activity of siRNA re-
mained the same in cells treated with sodium azide and in untreated cells, con-
firming that the uptake of siRNA/CADY complexes occurs via an ATP-energy 
independent mechanism (Rydström et al. 2011). 
 
 

1.4.3. Intracellular trafficking 

Despite diverse and complex cell-entry pathways, all internalized endocytic 
vesicles fuse with early endosomes (EE) after pinching off from the plasma 
membrane (Fig. 1). Early endosomes are tubulo-vesicular structures located at 
the periphery of cells, and function as major sorting compartments of cell (re-
viewed in Jovic et al. 2010). Within minutes after fusing with EEs, molecules 
are sorted to either recycling or degradation. Molecules which are destined for 
recycling accumulate to the tubular extensions of EEs, and cargo which is to be 
degraded stays in the lumen of endosome (Dunn et al. 1989, Mayor et al. 1993). 
By default, all molecules are destined to recycling, and only those which con-
tain a specific targeting signal remain in the vesicles lumen (Haglund et al. 
2003, Mosesson et al. 2003). The lumen of EEs is slightly acidic (pH ̴ 6.0), ena-
bling the dissociation of a receptor from its ligand, and thus, the receptors and 
their ligands can be directed to different destinations. While most (but not all) 
cell-surface receptors are recycled back to the plasma membrane for reutiliza-
tion, most ligands end up with degradation in lysosomes (reviewed in Jovic et 
al. 2010). 
 Early endosomes are not static structures, instead, shortly after homotypic 
fusion and fusion with transport vesicles, EEs start moving along microtubules 
to perinuclear region of cell, and mature into more acidic late endosomes (Fig. 
1a). The maturation of endosomes is regulated by small GTPases of Rab family 
of proteins (Rink et al. 2005). EEs are enriched with active (GTP-bound) Rab5, 
which recruits effector proteins to the EE which function in their trafficking, 
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fusion and sorting (reviewed in Grosshans et al. 2006). During transition from 
EE to LE, Rab5 is switched with Rab7, and at the same time, endosomes be-
come more acidic (pH ̴ 5). LEs are more spherical compared to EEs and contain 
numerous intraluminal vesicles (Murk et al. 2003). In addition, LEs have differ-
ent membrane composition, being enriched with triglycerides, cholesterol esters 
and certain phospholipids (Kobayashi et al. 1998, Hao et al. 2004). LEs fuse 
with transport vesicles which carry lysosomal hydrolases derived from Golgi 
apparatus (reviewed in Braulke and Bonifacino 2009), and mature into lyso-
somes with heterogeneous size and content, and a pH below 5. Lysosomes 
contain about 50 different degradative enzymes which hydrolyse all types of 
biological polymers (Journet et al. 2002, Sleat et al. 2005, Czupalla et al. 2006). 
All lysosomal enzymes are acid hydrolases which are only active in acidic envi-
ronment of lysosomes, but not in pH-neutral cytoplasm. The acidic environment 
of lysosomes is maintained by the proton pump activity in lysosomal mem-
brane, which consistently pumps protons into lysosomes from cytosol (Ohkuma 
et al. 1982). Several growth factor receptors which are not recycled back to the 
plasma membrane for reutilization, are degraded in lysosomes which terminates 
their biological response (receptor down-regulation) (Beguinot et al. 1984, 
Moore et al. 1999).  
 Although it is clear that endocytosis is the predominant cellular uptake route 
for most CPPs and their complexes with nucleic acid, the following intracellular 
trafficking is far less examined. We have previously used TEM to examine the 
intracellular trafficking of TP10 based CPP/oligonucleotide nanocomplexes 
(Oskolkov et al. 2011). We found that the CPP/oligonucleotide complexes avid-
ly associated with the plasma membrane of HeLa cells and inside cells resided 
in endosomes. 
 
 

1.4.4. Endosomal release of CPP/nucleic acid nanocomplexes 

One of the biggest obstacles of developing CPP-based systems for the delivery 
of biomolecules is the entrapment of the peptide and its cargo inside endo-
somes. In order to trigger the biological activity of therapeutic nucleic acids, 
their release from endosomes is essential. Various approaches have been em-
ployed to enable the release of bioactive cargo from endosomes such as the use 
of endosomotropic agents, fusogenic lipids or peptide modifications (reviewed 
in Hou et al. 2015). 
 The most well-known endosomotropic agent is chloroquine, a weak base 
which accumulates into endosomes and lysosomes due to protonation (Wibo 
and Poole 1974). The accumulation of chloroquine increases the concentration 
of ions inside endosomes, leading to the influx of water. The water influx, in 
turn, causes swelling of endosomes and their rupture. Indeed, chloroquine can 
increase the bioactivity of delivered nucleic acids. For example, Ezzat et al. 
showed that PF14-mediated SSO activity significantly increased in the presence 
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of chloroquine, while the cellular uptake remained at the same level (Ezzat et al. 
2011). 
 Conjugation of lipids to CPPs is another efficient approach to increase the 
endosomal release of nucleic acids (Futaki et al. 2001, Khalil et al. 2004, 
Tönges et al. 2006, Nakamura et al. 2007, Mäe et al. 2009, Lehto et al. 2010). 
Addition of fatty acid increases the hydrophobicity of CPP, making the peptide 
more lipophilic, which results in better membrane penetration (Mäe et al. 2009). 
In addition, fatty acid modification yields higher stability of the forming nano-
complexes between CPP and nucleic acid, probably by promoting DNA/RNA 
condensation and shielding from degradative enzymes (Lehto et al. 2010). Most 
commonly, conjugation of stearyl-group to the N-terminus of CPP is used. Stea-
rylation has been shown to increase the delivery of nucleic acids by various 
peptides such as Tat peptide (Futaki et al. 2001), oligoarginines (Futaki et al. 
2001, Khalil et al. 2004, Tönges et al. 2006), TP10 (Mäe et al. 2009) and 
(RxR)4 (Lehto et al. 2010). Mäe et al.demonstrated that st-TP10 led to about 30 
times higher splice correction activity compared to unmodified peptide, whereas 
the uptake of st-TP10/SSO complexes increased only 2 times. Besides stearyla-
tion, other fatty acids with different chain lengths can be conjugated to CPP. 
Langel et al. examined the fatty acid length on CPP to the transfection efficacy 
of CPP/SCO complexes, and found that fatty acids with 16–24 carbons in their 
tails yielded highest bioactivities of delivered SCO (Langel et al. 2010). 
 In addition to stearyl-moiety conjugation, other peptide modifications have 
been introduced to enhance the release of CPP/nucleic acid nanocomplexes 
from endosomes. For example, st-TP10 based peptide PF6 is modified by the 
addition of trifluoromethylquinolane side chains. These protonatable chloro-
quine analogues increase the endosomal release probably due to proton sponge 
effect (El-Andaloussi et al. 2011). Another st-TP10 analogue is PF14, which 
contains ornithines instead of lysines in its primary structure to avoid degra-
dation by extracellular peptidases. Despite being significantly more efficient 
compared to its parental st-TP10, majority of PF14/SSO nanocomplexes re-
mained entrapped inside endosomes (Ezzat et al. 2011). To overcome this 
obstacle, four chloroquine analogues were attached to the side chain of PF14 via 
a succinylated lysine-tree similarly to PF6. The resulting peptide, PepFect 15 
(PF15) led to significantly higher splice correction activity of SSOs compared 
to PF14. Importantly, the addition of chloroquine did not increase the activity of 
SSOs delivered by PF15, while it significantly enhanced the bioactivity of 
PF14-delivered SSOs (Lindberg et al. 2013). 
 The octa-arginine modified multifunctional envelope-type device (R8-
MEND) which condenses nucleic acids by polycations and is covered with lipid 
bilayer is also an efficient delivery system enabling endosomal release of nu-
cleic acids (Kogure et al. 2004, Nakamura et al. 2007). The endosomal release 
of nucleic acids delivered by MEND was even higher when pH-responsive 
fusogenic GALA peptide (cholesteryl-GALA) was incorporated to the delivery 
device instead of R8 (Kakudo et al. 2004). 
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 The mechanisms of how the release of CPP/nucleic acid complexes from 
endosomes occurs are not known in detail. In order to visualize endosomal re-
lease of CPP/cargo complexes in living cells, one needs to be able to detect 
small amounts of released cargo in cytoplasm in the presence of intensely fluo-
rescent endosomes. This, however, is complicated using conventional fluore-
scence based microscopy approaches. Recently, Wittrup et al. used an elegant 
spinning-disc microscope-based method which for the first time enabled to di-
rectly visualize the endosomal release of lipid-formulated siRNA (LNA, lipid 
nanoparticle) (Wittrup et al. 2015). The authors revealed that LNA-delivered 
siRNA was released from endosomes which were associated with Rab5 and 
Rab7 meaning that the release event occurred from maturing endosomes. Since 
the diffuse signal of fluorescently labelled siRNA spread all over cytoplasm 
within seconds after the release, they suggested that siRNA rather than intact 
LNAs were released from endosomes. Importantly, only one release event was 
detected from each individual endosome, indicating that the endosomal mem-
brane was not damaged during the release. Interestingly, the release of siRNA 
from endosomes triggered the activation of autophagy, resulting the formation 
of autophagosomes which eventually fused with lysosomes. 
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2. AIMS OF THE STUDY 

The aims of the current thesis were to characterize the size and morphology of 
CPP/nucleic acid nanocomplexes and to examine their cell-entry mechanisms 
and intracellular trafficking.  
 
More specifically, the goals were: 
 To examine the cell surface interactions and the intracellular trafficking of 

NickFect51 nanocomplexes with oligonucleotides (Paper I) 
 To examine the cellular uptake mechanisms and intracellular trafficking of 

PepFect14, NickFect1 and NickFect51 nanocomplexes with plasmid DNA 
(Paper II, Paper III) 

 To characterize the size and morphology of NickFect1, NickFect51, Pep-
Fect6 and PepFect14 nanocomplexes with nucleic acids (Paper IV) 
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3. METHODOLOGICAL CONSIDERATIONS 

The detailed characterization of the methods is provided in the respective publi-
cations attached to the thesis, and only the most comprehensively used tech-
niques in the study will be discussed in the following chapter. 
 
 

3.1. Cell lines 
We used various cell-lines in Paper I–III to examine 1) transfection efficacy and 
2) cellular uptake mechanisms of CPP/nucleic acid nanocomplexes. We em-
ployed commonly used HeLa and CHO cell lines and hard-to-transfect MEF 
cells, T and B lymphocytes, RD4 skeletal muscle cells and mES cells in the 
study. 
 In order to examine the splicing redirection activity of SSOs in cells (Paper 
II), we used HeLa pLuc 705 cell-line, developed by Kang et al. (Kang et al. 
1998). HeLa pLuc 705 cells are the most commonly used cell-model for exami-
nation of splicing switching activity of SSOs. These cells are stably transfected 
with luciferase encoding gene that contains a mutated β-globin intron 2, pro-
ducing an aberrant pre-mRNA splicing site, which results in synthesis of non-
functional luciferase. However, binding of complementary oligonucleotide to 
the aberrant splicing site restores the expression of luciferase. Since HeLa pLuc 
705 cells are typically used for the evaluation of SSO activity in transfected 
cells, the results obtained from diverse studies can be compared to each other.  
 In the experiments unravelling cell-entry mechanisms and intracellular traf-
ficking of CPP/nucleic acid nanocomplexes we used CHO (Paper I), HeLa (Pa-
per III) or HeLa pLuc 705 (Paper II) cells. We chose HeLa and CHO cells for 
the cellular uptake studies because these are easy to transfect and commonly 
used cell-lines in the field. Thus, the obtained results could be more easily com-
pared with the data from literature. We used HeLa pLuc 705 cells in Paper II 
because we employed the same cell-line in functional assays for the measure-
ment of the activity of SSOs delivered by NF51. 
 
 

3.2. CPPs 
Transportan, a chimeric peptide derived from the N-terminal fragment of the 
neuropeptide galanin and a wasp venom peptide mastoparan is one of the most 
studied CPPs since its discovery in 1998 (Pooga et al. 1998). Transportan is 
able to carry nucleic acids inside cells, but it is not capable of inducing the bio-
logical activity of delivered cargo due to the endosomal entrapment. Since the 
discovery of transportan several chemical modifications have been introduced 
to its primary sequence to improve the cellular uptake and endosomal release of 
CPP/nucleic acid nanocomplexes (Mäe et al. 2009, El-Andaloussi et al. 2011, 
Ezzat et al. 2011, Oskolkov et al. 2011). 
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 In Paper II we designed three novel transportan-based CPPs – NickFect 51 
(NF51), NickFect 53 (NF53) and NickFect 61 (NF61) for the cellular delivery 
of different types of nucleic acids. In Paper I and Paper III we examined the 
transfection efficacy, cell-entry mechanism and intracellular trafficking of 
CPP/pDNA nanocomplexes using three transportan-based peptides – PepFect14 
(PF14), NickFect1 (NF1) and NF51. In Paper IV, we used PepFect 6 (PF6), 
PF14, NF1 and NF51 to examine their size and morphology when complexed 
with nucleic acids. 
 
Collectively, the CPPs used in the thesis are listed in Table 5. 
 
 
Table 5. Peptide sequences used in the thesis. 
 

Peptide Sequence Reference 

PF6 

 

El Andaloussi 
et al. 2011 

PF14  Stearyl-AGYLLGKLLOOLAAAALOOLL-NH2 Ezzat et al. 
2011 

NF51 

 

Paper II 

NF53 

 

Paper II 

NF61 

 

Paper II 

NF1 
 

Oskolkov et 
al. 2011 
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3.3. CPPs and their complexes with nucleic acids 
For coupling of CPPs to nucleic acids we used non-covalent (or co-incubation) 
strategy throughout the studies. The co-incubation of CPPs with nucleic acids 
results the formation of nanocomplexes due to electrostatic and hydrophobic 
interactions between positively charged peptide and negatively charged cargo. 
 We formed CPP/nucleic acid nanocomplexes in similar manner in all studies 
(Paper I–IV). We complexed CPPs with nucleic acids in water at ambient tem-
perature for 30 min–1 h. In experiments with cells we added serum-containing 
or serum-free tissue culture medium immediately before incubation of com-
plexes with cells. For complexation of CPPs with nucleic acids we varied the 
molar ratio (CPP: oligonucleotide) or charge ratio (CPP: pDNA) of the used 
peptides and nucleic acids. The charge ratio was calculated taking into account 
the positive charges of used peptides and negative charges of used pDNA. 
 
 

3.4. Characterization of CPP/nucleic acid nanocomplexes 
3.4.1. Dynamic light scattering (DLS) 

Dynamic light scattering (DLS) is the most commonly used method to analyse 
the properties of colloidal particles ranging from 1 nm to several micrometres in 
diameter. DLS is a simple and fast method for the characterization of size, sur-
face charge and polydispersity of colloids. DLS technique is based on the prop-
erty of colloidal particles to randomly move in solution, Brownian motion. 
Larger particles move slower and smaller particles move faster in the suspen-
sion. When laser light is directed through cuvette containing a colloidal suspen-
sion, the fluctuating particles cause change in the wavelength intensity. The 
time-scale fluctuations of scattered light are directly related to the diffusion 
coefficient, which in turn, is related to the size of particles. Thus, by measuring 
the scattered light intensity in time by detector, the size of particles can be esti-
mated. The outcome of DLS measurement is the hydrodynamic diameter of 
particles. This is the diameter of the hard sphere (solution) that moves at the 
same speed as the particle being measured (reviewed in Philo 2006, Hassan et 
al. 2015). 
 Charged particles associate a thin layer of strongly bound counter-charged 
ions on their surface, called the Stern layer. Outside the Stern layer, there is 
another layer of ions, called diffuse outer layer where ions are loosely associ-
ated with the particle. The diffuse outer layer of ions generates a boundary be-
tween the particle and ions that remain in the surrounding medium. The electro-
static potential of this boundary is the ζ-potential of a particle. To measure ζ-
potential, an electrical field is applied across the sample and the movements 
(electrophoretic mobility) of particles are measured by the light scattering of the 
particles (reviewed in Doane et al. 2012). 
 We used Zetasizer Nano ZS apparatus (Malvern Instruments, United King-
dom) to measure size, ζ-potential and polydispersity in our studies. We used 
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different incubation mediums for CPP/nucleic acid NPs – water, serum-free and 
serum-containing medium, and in Paper I NaCl aqueous solution was also used. 
 
 

3.4.2. Transmission electron microscopy (TEM) 

DLS is highly suitable method for fast screening to obtain a general overview of 
the properties of particles under investigation. However, this method does not 
provide detailed information about the morphology of the nanoparticles. In ad-
dition, DLS is an indirect measurement that presumes the particles to be spheri-
cal. Moreover, the signal from small particles can be easily underestimated in 
the background of large particles (Troiber et al. 2013). Lastly, the outcome of 
DLS is the hydrodynamic diameter of particles, not their actual size (Huang et 
al. 2010, Troiber et al. 2013). Thus, additional techniques should be used in 
parallel to obtain complementary and more reliable results. Negative staining 
TEM enables to directly visualize individual nanoparticles, and thus, provides 
information about their morphology, size, size distribution, and aggregation. 
 We employed negative staining TEM analysis (Paper IV) for the detailed 
characterization of CPP/nucleic acid nanocomplexes. Negative staining TEM 
has been used for the morphological characterization of liposomes and lipo-
plexes in various studies (Hatziantoniou et al. 2007, Ruozi et al. 2011, Gilleron 
et al. 2013), but to our knowledge, this approach has not been used for the 
examination of CPP/nucleic acid nanocomplexes before. 
 An important prerequisite for successful negative staining is the correct pre-
paration of TEM support grids. We covered copper grids with formvar film and 
thin (5–6 nm) carbon layer. Since freshly prepared carbon deposit is hydro-
phobic, and results in poor and uneven distribution of stain, the carbon coated 
grids need to be treated prior experiment to obtain hydrophilic surface. In order 
to produce hydrophilic carbon layer, we employed glow discharge treatment 
before each experiment.  
 For conducting negative staining TEM analysis we adsorbed preformed 
CPP/nucleic acid NPs to carbon coated TEM grids, exposed samples to 2% 
uranyl acetate for, removed excess of stain, allowed to air-dry, and imaged at 
120 kV accelerating voltage on FEI Tecnai G2 Spirit electron microscope (FEI, 
The Netherlands). The principle of negative staining TEM is simple. The heavy 
metal salts predominantly stain the surface of grids while nanoparticles remain 
unstained, and the TEM image is generated by distinct electron scattering from 
nanoparticles and stained background due to the mass-thickness difference. 
 Various heavy metal salts can be used for negative staining TEM experi-
ments. The most well-known negative stains are uranyl-acetate (pH 4.2–4.5), 
sodium phosphotungstate (pH 5–8), ammonium molybdate (pH 5–7) and 
methylamine tungstate (pH 6–7) (reviewed in Harris and De Carlo 2014). We 
used 2% aqueous uranyl acetate because this stain produces high contrast of 
images, and assures even distribution of stain on samples. 
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3.5. Cellular uptake and intracellular trafficking of 
CPP/nucleic acid nanocomplexes 

3.5.1. Confocal laser scanning microscopy (CLSM) 

Confocal laser scanning microscopy (CLSM) is a highly suitable approach for 
intracellular trafficking of CPP/nucleic acid complexes in living cells. In Paper 
III we transfected cells with double-labelled CPP/pDNA nanocomplexes where 
peptide and plasmid DNA were tagged with different fluorophores – fluorescein 
(green) and CX-Rhodamine (red), respectively, to track their uptake in real time 
using CLSM. To be able to detect the rearrangements of nanocomplexes in cells 
we optimized the concentration of labelled molecules to yield an equal signal of 
both fluorochromes, which displays nanocomplexes in a yellow colour in a 
combined image. We captured images of live cells after 30 min and 2 h with 
Olympus Flow View FV1000 confocal laser scanning microsope (Olympus, 
Japan). This technique allowed us to visualize the changes in the composition of 
nanocomplexes in time and in specific loci. The dissociation of peptide which 
was labelled with green emitting fluorescence shifted the colour of complexes 
toward orange or red, and the dissociation of pDNA which was labelled with 
red emitting fluorescence changed the colour of nanocomplexes to green. Care 
must be taken in the interpretation of the results using this technique because 
accumulation of nanocomplexes into late endosomal compartments with low pH 
(pH 5–6) decreases the green emission of fluorescein that was used for labelling 
of the peptide. 
 

3.5.2. TEM 

The most widely used approach to investigate the cellular uptake and intra-
cellular trafficking of CPP/nucleic acid nanocomplexes is co-localization analy-
sis with endosomal markers using fluorescence microscopy. This approach is 
highly suitable for the studies using live cells, however, there are several limita-
tions. Most importantly, the resolution of fluorescence microscopy is limited to 
about 200 nm (super-resolution 10–20 nm), which could cause the false co-
localization signal of labelled complexes and markers of cellular compartments 
located in close proximity. Secondly, fluorescence signal can be quenched in 
cells upon non-covalent interactions between fluorophore and its molecular 
milieu. In addition, the ratio of fluorescently labelled markers needs to be opti-
mized to avoid one fluorescent probe to eclipse the fluorescence of the other 
probe. Thus, complementary techniques should be used in parallel to assure 
relevant interpretation of the results. Transmission electron microscopy (TEM) 
provides high resolution (about 2 nm in cells), and thus, enables to investigate 
the plasma membrane association and cellular localization of CPP/cargo com-
plexes at ultrastructural level. For TEM analysis cells need to be fixed and 
therefore dynamic events cannot be directly visualized, however, by varying the 
incubation times of CPP/cargo complexes on cells, one can examine the intra-
cellular localization of the nanocomplexes in time-dependent manner. 
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 We used conventional TEM for the fixation and embedding of cells for pre-
serving the morphology at ultrastructural level for analysis (reviewed in Margus 
et al. 2015). We fixed cells using 2.5% glutaraldehyde, postfixed with 1% 
OsO4, dehydrated with ethanol series, and flat-embedded in epoxy resin. Flat-
embedding was used because this method allows visualizing the largest area of 
individual cells. 
 For visualization of nucleic acids with electron dense tag we used in prin-
ciple two different approaches. In Paper II we tagged SSO molecule covalently 
with a NanogoldTM (NG; d=1.4 nm) label. Thus, we were able to directly visu-
alize single oligonucleotide molecules at the cell surface and inside cells. In 
Paper I and III we performed a TEM analysis using pDNA instead of oligo-
nucleotides. For visualization we first biotinylated pDNA and then complexed 
the biotinylated pDNA with streptavidin-NanogoldTM (SA-NG) (Paper I) or 
neutravidin-gold (NA-gold) (d=10 nm) (Paper III). We labelled each pDNA 
molecule with about three SA-NG (Paper I) or two NA-gold clusters (Paper III). 
 We captured TEM images at 100 kV accelerating voltage on JEM-100S 
(JEOL, Japan) or FEI Tecnai G2 Spirit (FEI, The Netherlands) electron micro-
scope. 
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4. RESULTS 

4.1. Cell-entry mechanisms and intracellular trafficking  
of PepFect14/pDNA NPs (Paper I) 

Recently, Ezzat et.al. designed a novel stearyl-TP10 (st-TP10) based peptide 
vector PepFect14 (PF14) for nucleic acid delivery (Ezzat et al. 2011). PF14 
contains ornithines and leucines instead of lysines and isoleucines in its primary 
sequence. This design is based on previous reports stating that poly-L-ornithine-
based transfection systems yield higher biological activity of delivered bio-
molecules compared to poly-L-lysine-based delivery vectors (Ramsay and 
Gumbleton 2002). Ornithine as a non-standard amino acid was suggested to 
grant the peptide higher resistance against serum peptidases. The measurement 
of luciferase mRNA levels after running RT-PCR revealed high transfection 
efficacy of PF14/SSO nanocomplexes in HeLa pLuc 705 cells, yielding >85% 
of splicing correction after 24 h of transfection. The EC50 of PF14/SSO nano-
complexes was low (about 100 nM) in both serum free and serum-containing 
tissue culture media. Importantly, significant splice correction activity was mea-
sured in mdx mouse myotubes, a functional cell culture model for Duchenne 
muscular dystrophy, even in the presence of serum proteins (Ezzat et al. 2011) 
(Table 5). 
 In paper I we analysed whether PF14 is suitable for the delivery of pDNA. In 
addition we examined the formation of PF14/pDNA nanocomplexes, their cel-
lular uptake mechanism, and intracellular trafficking. 
 
 

4.1.1. PF14 forms stable NPs with pDNA 

In order to examine whether PF14 forms NPs with pDNA we conducted a gel 
retardation assay using different CRs of PF14 and pDNA. We used CRs 0.5: 1–
4:1 (CPP: pDNA) for the formation of nanocomplexes, and found that the 
charge of pDNA was completely masked (and probably incorporated into nano-
particles) at CR2 since at this and higher ratios pDNA did not migrate into the 
gel (Paper I, Fig. 1a). In addition, we employed ethidium bromide (EtBr) 
quenching assay and demonstrated that the fluorescence quenching reached a 
plateau at CR2, indicating the absence of free pDNA at higher CRs (Paper I, 
Fig. 1b). We obtained similar results when used PF14 which lacks N-terminal 
stearyl motif (ns-PF14) for the formation of nanocomplexes with pDNA (Paper 
I, Fig. 1b). 
 The stability of nanoparticles developed for drug delivery is an important 
parameter. On one hand, the CPP/nucleic acid complexes need to be stable in 
blood circulation in order to resist degradation by serum proteases and/or nucle-
ases. On the other hand, inside cells, the dissociation of the carrier peptide from 
nucleic acid molecule needs to be ensured to yield biological function of the 
cargo in its action site in cytoplasm or nucleus. We used heparin displacement 
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to analyse the particle-dissociation properties of PF14/pDNA by gel electro-
phoresis. Incubation of PF14/pDNA with varying amounts of negatively 
charged heparin increased the concentration of free pDNA (Paper I, Fig. 1d). By 
using spectrofluorometer we revealed that about 50% of the pDNA was released 
from the NPs at heparin sodium concentration of 10 mg/ml. Interestingly, nano-
complexes formed with ns-PF14 dissociated at lower heparin concentrations, 
suggesting that these complexes are less stable (Paper I, Fig. 1d). As discussed 
in the next chapter, ns-PF14 did not induce the transgene expression in trans-
fected cells in contrast to PF14/pDNA which yielded high luciferase activity of 
delivered plasmid. Similar observations have also been made earlier when st-
TP10 was shown to yield higher activity of delivered pDNA compared to ns-
TP10/pDNA nanocomplexes which lacked biological functionality (Lehto et al. 
2011). Taken together, our results indicate that the hydrophobic motif in the 
CPPs sequence is important for the formation of stable nanocomplexes, and the 
stability of CPP/nucleic acid NPs is crucial for inducing biological activity of 
bioactive molecules. 
 We analysed the size of PF14/pDNA NPs by DLS, and found that 
PF14/pDNA NPs had a size of 130–170 nm (CR 1–3) when formed in water 
(Paper I, Table 1). The addition of OptiMEM or OptiMEM and FBS increased 
the size of the NPs about 2-fold. The ζ-potential of the PF14/pDNA NPs (at CR 
2) formed in water was about -40 mV. The addition of OptiMEM or OptiMEM 
and FBS shifted the ζ-potential to near neutral, but the overall charge of the 
nanocomplexes remained negative. 
 
 

4.1.2. PF14/pDNA NPs internalize to cells via  
caveolin-mediated endocytosis and macropinocytosis 

Next, we assessed whether PF14-mediated cellular delivery of plasmid DNA 
induces biological response in cells. We incubated CHO cells with preformed 
nanocomplexes of PF14 and luciferase encoding pGL3 plasmid. After 24 h of 
incubation, the luciferase activity had increased 4 orders of magnitude (Paper I, 
Fig. 2a). As mentioned above, complexes formed with ns-PF14 did not yield 
luciferase expression (Paper I, Fig. 2a). By using fluorescence-activated cell 
sorter (FACS) analysis we found that PF14/pDNA NPs were internalized by 
cells in dose-dependent manner in both serum free (Paper I, Fig. 2b) and serum 
containing (Paper I, Fig. 2c) tissue culture media. PF14 induced 20–30-fold 
higher luciferase activity compared to its predecessor PF3 (st-TP10) (Paper I, 
Fig. 2d). 
 In order to analyse the plasma membrane association, cellular uptake mecha-
nism, and intracellular trafficking of PF14/pDNA nanocomplexes we performed 
a TEM analysis. To visualize pDNA in TEM we associated biotinylated pDNA 
with about 3 streptavidin-NanogoldTM (SA-NG) molecules, and complexed with 
PF14. PF14/pDNA associated with the cell-surface as small clusters which typi-
cally contained 2–10 SA-NG labels, indicating the incorporation of about 1–2 
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pDNA molecules in a nanocomplex (Paper I, Fig. 3a,b). Mostly, these com-
plexes associated with the surface of cells as single NPs, but occasionally inter-
acted to each other forming chain-like structures. Frequently, we detected the 
nanocomplexes in membrane invaginations of 50–100 nm in diameter (Paper I, 
Fig. 3b). Judged by their size and morphology, these invaginations were of 
caveolar origin. Occasionally, we detected nanocomplexes in rosette-like struc-
tures resembling so called caveosomes (paper I, Fig 3a, inset). After 1 h of in-
cubation the vast majority of PF14/pDNA nanocomplexes resided in endosomes 
containing numerous small vesicles in the vesicles lumen – multivesicular bod-
ies (MVBs)/late endosomes (Paper I, Fig. 3c,d). Occasionally, the endosomal 
membranes had lost their intactness, paving the way for the nanoparticles to 
escape to cytosol (Paper I, Fig. 3d). Still, we rarely detected SA-NG labels in 
cytoplasm without being surrounded by endosomal membrane after 1 h of incu-
bation.  
 In the TEM experiments the amount of labelled SSOs detected at the plasma 
membrane and inside cells was much smaller than we expected. Possibly, the 
PF14 packed nanogold-labelled pDNA into very compact nanoparticles, making 
the nanogold label inaccessible for enhancement by silver ions. Therefore, we 
later repeated the experiments using biotinylated pDNA labelled with neu-
travidin-colloidal gold (d= 10 nm) (homemade) (NA-gold) which does not re-
quire silver enhancement due to sufficient size for detection in TEM. We la-
belled biotinylated pDNA with about 3 NA-gold molecules, and complexed 
with PF14. The PF14/pDNA complexes associated with the plasma membrane 
of CHO cells as in Paper I, typically containing 1–10 NG-gold particles, indi-
cating the presence of 1–3 plasmid molecules in a nanoparticle (Fig. 2a–c). At 
the surface of cells, we detected PF14/pDNA nanocomplexes frequently in 
small membrane invaginations which resembled caveolae (Fig. 2b) or in lamel-
lipodes which resembled macropinocytosis (Fig. 2c, arrows). A fraction of 
nanocomplexes localized in small transport vesicles near the plasma membrane 
(Fig. 2a,d). After 2 h of incubation most PF14/pDNA complexes that had inter-
nalized to cells were entrapped inside MVBs (Fig. 2e, arrows), but occasionally, 
SSOs were detected in cytosol (Fig. 2e, arrowhead). After 4 of incubation, the 
nanocomplexes were still mostly entrapped inside MVBs (Fig. 2f, arrows), 
however, we rarely detected the complexes also in lysosomes (Fig. 2g, arrows). 
We did not see any PF14/pDNA nanocomplexes inside the nucleus of cells 
during 4 h of incubation.  
 Our results are in good correlation with earlier observations that incubation 
of PF14/SSO nanocomplexes at 4ºC which inhibits energy-dependent cellular 
uptake mechanisms significantly decrease the activity of delivered SSO. In ad-
dition, chloroquine has been shown to increase the functional activity of PF14-
mediated SSO, confirming that endosomal entrapment is the limiting factor of 
peptide mediated delivery of nucleic acids (Ezzat et al. 2011).  

Recently, we employed pharmacological inhibitors of endocytosis to exam-
ine the cellular uptake mechanism of PF14/SSO nanocomplexes, and found that 
the bioactivity of SSO in HeLa pLuc 705 cells was significantly reduced in the 



 
 

Figure 2. Cell-entry and intracellular trafficking of PF14/pDNA nanocomplexes. 
Cell-surface interactions (A–C) and intracellular localization (D–G) of PF14-pDNA 
complexes labelled with neutravidin-gold (d=10 nm) in CHO cells after 1 h (A–D), 2 h 
(E) or 4 h (F,G) of incubation in serum-containing tissue culture medium. Arrows show 
PF14/pDNA nanocomplexes at the plasma membrane (C), in multivesicular bodies (E, 
F) and in lysosome (G). Arrowhead in E shows pDNA in cytosol. Scale bars: 500 nm 
(A, E–G), 100 nm (B–D). 
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presence of amiloride and nystatin which impede macropinocytosis and caveo-
lin-mediated endocytosis, respectively (Juks et al. 2015). Interestingly, although 
the nanocomplexes-containing endosomes translocated to perinuclear region of 
cells, these did not co-localize with Lysotracker, which specifically marks aci-
dic compartments of cells, even after 4 h of incubation. By this time, approxi-
mately 8% of nanocomplexes had been released from endosomes. In addition, 
we demonstrated that PF14/SSO nanocomplexes are not directed to endoplas-
mic reticulum or Golgi complex as earlier been suggested for cargo internalized 
by caveolin-mediated endocytosis (Pelkmans et al. 2001, Le and Nabi 2003). 
 Together, these results show that PF14/nucleic acid nanocomplexes internal-
ize cells via endocytic pathways, and macropinocytosis and caveolin-mediated 
endocytosis are important for yielding bioactivity of delivered cargo. Although 
PF14/nucleic acid nanocomplexes yield high bioactivity of cargo, most of the 
internalized PF14/cargo nanocomplexes still remain entrapped inside endo-
somes after 4 h of incubation. 
 

4.1.3. Scavenger receptors are involved in the cellular uptake of 
PF14/pDNA nanocomplexes 

Scavenger receptors are a large family of cell surface glycoproteins which can 
bind polyanionic ligands (Platt and Gordon 1998, Peiser and Gordon 2001). For 
example, class-A scavenger receptors (SCARAs) have been shown to be in-
volved in the uptake of diverse nucleic acids (Pearson et al. 1993, Limmon et al. 
2008, DeWitte-Orr et al. 2010) and oligonucleotide-functionalized gold 
nanoparticles (Patel et al. 2010). Recently, Ezzat et al. revealed that SCARA3 
and SCARA5 are involved in the uptake of PF14/SSO nanocomplexes (Ezzat et 
al. 2012). To evaluate whether SCARAs are also involved in the uptake of 
PF14/pDNA NPs we pretreated CHO cells with SCARA inhibitory ligands 
polyinosinic acid (poly I), dextran sulfate and fucoidan and measured the lucif-
erase activity after 24 h of incubation (Paper I, Fig. 4). Inhibition of SCARAs 
almost entirely abolished the luciferase activity indicating that these receptors 
are essential for the cellular uptake of PF14/pDNA nanocomplexes. As a nega-
tive control, we pretreated cells with polycytidylic acid (poly C), chondroitin 
sulfate and galactose (structurally similar to the used inhibitory ligands, but lack 
affinity to SCARAs), and these did not affect the bioactivity of PF14/pDNA 
nanocomplexes. 

Collectively, in Paper I we showed that PF14 packed pDNA into stable 
nanoparticles which had a size of 130–170 nm in diameter when formed in 
water. The addition of tissue culture medium or physiological salt solution 
increased the size of particles 2-fold or 4-fold, respectively. The ζ-potential of 
the PF14/pDNA nanoparticles was slightly negative both when formed in water 
or in tissue culture media. PF14/pDNA nanocomplexes internalize to CHO cells 
by endocytosis, and specific mechanisms involve caveolin-mediated endocyto-
sis and macropinocytosis. The limiting step of biofunctionality of the cargo is 
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the entrapment of complexes inside late endosomes as only a small fraction of 
plasmid molecules were detected free in cytosol. 

 
 

4.2. NickFect 51 mediates the cellular uptake of SSO using 
endocytosis (Paper II) 

In Paper II we designed three st-TP10 based CPPs in order to improve the 
effectiveness of the peptide to mediate the cellular uptake of nucleic acids. 
NickFect53 (NF53) was obtained by changing the Lys7 of st-TP10 with orni-
thine, NickFect61 (NF61) was obtained by using ε-NH2 group of Lys7 for sub-
sequent synthesis instead of α-NH2 that is typically used, and NickFect51 
(NF51) was obtained by replacing Lys7 with ornithine and continuing synthesis 
by coupling Gly6 to δ-NH2 group of ornithine (Paper II, Fig. 1, Table 5). 
 We examined the transfection efficacy of these novel CPPs using different 
types of nucleic acids (pDNA, SSO, siRNA). In addition, we examined the cel-
lular uptake and intracellular trafficking of CPP/SSO nanocomplexes, however, 
we only employed NF51 for these studies because this peptide led to signifi-
cantly higher bioactivity of delivered nucleic acids compared to NF53 and 
NF61. 
 
 

4.2.1. NFs form nanoparticles with nucleic acids 

We evaluated the size of NF51, NF53 and NF61 nanoparticles with nucleic acid 
by DLS. We found that NFs packed pDNA, SCO or siRNA into particles which 
had a size of 60–75 nm, 86–135 nm and 70–159 nm respectively, when formed 
in water (Paper II, Table 1). The addition of serum proteins had a varying effect 
on the size of the NPs, either retaining, increasing, or decreasing the measured 
diameter depending on the used CPP and nucleic acid. In the presence of serum 
proteins NF/nucleic acid NPs had slightly negative ζ-potential in case of all 
studied peptides. 
 
 

4.2.2. NF51 efficiently delivers different types  
of nucleic acids into cells 

To analyse the effectiveness of NFs to deliver nucleic acids (SSO, siRNA, 
pDNA) into cells we incubated cells with preformed CPP/nucleic acid nano-
complexes and measured the biological activity of respective nucleic acid after 
24 h of incubation. 
 We complexed luciferase encoding pGL3 plasmid with NF51, NF53 or 
NF61, incubated in CHO cells, and measured the luciferase expression level 24 
h later. NF53 and NF61 led to 10–100-fold, and NF51 led to about 1000-fold 
increase in luciferase expression in serum-free cell growth medium compared to 
st-TP10 (Paper II, Fig. 2a). NF51/pDNA NPs induced target gene expression in 
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various cell-lines including hard-to-transfect mouse embryonic fibroblasts 
(MEFs), T and B lymphocytes, Jurkat and A20 cells (Paper II, Fig. 2b–d, Paper 
II, Fig. S1a-d). While NF53 and NF61 induced lower or same level of SSO 
activity, NF51/SSO NPs yielded 4–5-fold higher SSO activity compared to st-
TP10 in HeLa pLuc 705 cells (Paper II, Fig. 4a). The splice correction activity 
induced by SSO delivered by NF51 was higher than that of LF2000, both in 
serum-containing and serum-free tissue culture media (Paper II, Fig. 4a,b). Alt-
hough NF53 and NF61 effectively induced EGFP downregulation using siEGFP 
in CHO cells stably expressing EGFP in serum-free medium, the siRNA activ-
ity remained low in the presence of serum proteins (Paper II, Fig. 5a). In con-
trast, NF51/siEGFP induced strong EGFP downregulation in the absence and in 
the presence of serum proteins (Paper II, Fig. 5a,b). 
 Taken together, out of three novel TP10-based CPPs NF51 is the most prom-
ising vector for nucleic acid delivery. NF51 yields high bioactivity of pDNA, 
SSO and siRNA in various cell-lines including hard-to-transfect cells, and the 
activity is not decreased in the presence of serum proteins.  
 
 

4.2.3. NF51/SSO NPs are released from endosomes 

Subsequently, we used TEM analysis to examine the cellular uptake mecha-
nisms and intracellular trafficking of NF51/SSO nanocomplexes. We used SSO 
molecules covalently tagged with NanogoldTM for the visualization of SSO in 
cells by TEM. We detected NF51/SSO-NG at the surface of cells as particles of 
varying size ranging from 80–170 nm (Paper II, Fig. 6a,b). The low electron 
density suggested that these NPs were loosely packed. Inside cells, we detected 
NF51/SSO NPs mostly in large (400–500) nm vesicles (Paper II, Fig. 6c). 
Frequently, the nanocomplexes were in close proximity to the endosomal 
membrane, and occasionally, the membrane had lost its intactness at the sites of 
association after 4 h of incubation (Paper II, Fig. 6d). Importantly, we detected 
some NG particles in the cytoplasm without being surrounded by the limiting 
endosomal membrane (Paper II, Fig. 6c–f). After 4 h of incubation, we rarely 
detected some SSO-NGs in nuclei of cells (Paper II, Fig. 6e). 

Taken together, in Paper II we designed novel TP10-based CPPs – NF51, 
NF53 and NF61 – for the delivery of nucleic acids into cells. The CPPs 
condensed nucleic acids into nanoparticles which had a size range of 60–160 
nm depending on the used peptide and nucleic acid, when formed in water. 
NF51 was the most effective of the three novel peptides for the delivery of 
pDNA, SSO and siRNA, inducing high biological activity of cargos both in the 
presence or absence of serum proteins in various cell-lines. Inside cells 
NF51/SSO nanoparticles localized mainly in large (400–500 nm in diameter) 
vesicles indicating their uptake via endocytosis. After 4 h of incubation we 
occasionally detected the NF51/SSO nanocomplexes in cytosol, however, 
similarly to PF14/pDNA nanocomplexes (Paper I), most of the complexes 
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remained entrapped in endosomes. Importantly, we detected SSOs in the nuclei 
of cells after 4 h of incubation, however, this was a rare event. 

 
 

4.3. NickFects deliver nucleic acids into cells using  
different endocytic mechanisms (Paper III) 

We recently developed a series of st-TP10 based CPPs, termed NickFects, for 
the delivery of nucleic acids such as SSO, siRNA and pDNA (Oskolkov et al. 
2011, Paper II). These peptides yielded high transfection levels of nucleic acids 
in various cell-lines. In this paper, we examined the cell-entry mechanisms and 
intracellular trafficking of NF1/pDNA and NF51/pDNA nanocomplexes. NF1 
contains a phosphorylated tyrosine in the third position and Ile11 is replaced 
with threonine as compared to st-TP10 (Table 5). NF51 has Lys7 replaced with 
ornithine and the δ-amino group of ornithine is used for the following synthesis 
instead of typically used α-NH2 group in order to gain a kinked peptide (Table 
5). Although different in their primary structures, these CPPs yielded equally 
high transfection levels of nucleic acids in transfected cells. 
 
 

4.3.1. Characterization of NF/pDNA NPs 

 We measured the size of NF/pDNA NPs by DLS and found that both peptides 
formed NPs with pDNA at CR 2 and CR 3 which had a diameter of about 60 
nm when complexed in water (Paper III, Table S1). The ζ-potential of 
NF51/pDNA nanocomplexes was positive (31–38 mV), and NF1/pDNA NPs 
had a negative (-18– -13) mV) ζ-potential at both used CRs. The addition of 
serum-containing medium increased the size of NPs from 60 nm to 160 nm and 
yielded negative ζ-potential for both, NF1/pDNA and NF51/pDNA NPs. The 
incubation of NPs with serum-containing tissue culture media for 1 h increased 
the size up to 400–500 nm. 
 Next, we analysed the stability of nanoparticles by incubating preformed 
NF/pDNA NPs with varying concentrations of competitor molecule heparin, 
and analysed the dissociation of nanocomplexes using agarose gel electro-
phoresis (Paper III, Fig. 1). We found that NF51/pDNA NPs were more re-
sistant to sodium heparin displacement compared to NF1/pDNA NPs. We con-
firmed these results by using spectrofluorometer, and demonstrated that while 
NF1/pDNA NPs required 2.5 mg/ml of heparin to replace 50% of pDNA in the 
NPs, NF51/pDNA needed 7 mg/ml to achieve the same level of heparin re-
placement in the respective NPs. This data indicates that NF51 forms more sta-
ble nanoparticles with plasmid DNA compared to NF1. The higher stability 
could grant NF51/pDNA nanocomplexes higher resistance against degradation 
by extracellular proteases and/or nucleases. Still, once inside cells, the release of 
pDNA from the carrier peptide need to occur in order to trigger the bioactivity 
of the cargo.  
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4.3.2. Cell-entry mechanisms of NF/pDNA NPs 

Incubation of NF1/pDNA and NF51/pDNA NPs at low (4ºC) temperature 
significantly decreased their cellular uptake, suggesting that their internalization 
occurs through energy-dependent mechanism (Paper III, Fig. S4). To further 
confirm that endocytosis is involved in the cellular uptake of NF/pDNA NPs we 
added chloroquine to the cells incubated with respective NPs. Interestingly, 
chloroquine did not increase the bioactivity of NF51/pDNA, while it elevated 
the gene expression level of NF1-mediated pDNA more than 3-fold (Paper III, 
Fig. 4a). 
 Subsequently, we used pharmacological inhibitors of endocytosis to impede 
the activity of common endocytic pathways. We pretreated cells with chlor-
promazine, nystatin or cytochalasin D to suppress clathrin-mediated-, caveolin-
mediated endocytosis or macropinocytosis, respectively, before transfection. 
Cytochalasin D reduced the bioactivity of NF51/pDNA NPs for 75% (Paper III, 
Fig. 4b). Other inhibitors did not affect the activity of NF51/pDNA, indicating 
that macropinocytosis is the major cell-entry pathway for NF51/pDNA NPs. In 
contrast, the activity of NF1/pDNA NPs was impeded by 50% in the presence 
of chlorpromazine or cytochalasin D, and by 20% with nystatin, suggesting that 
these NPs employ several endocytic pathways to gain entry into cells (Paper III, 
Fig. 4c). Still, it is important to keep in mind that pharmacological inhibitors of 
endocytosis are not very specific, and one inhibitor can affect the endocytosis 
by several mechanisms. Therefore, to gain additional information about the cell-
entry mechanisms of NF/pDNA NPs we conducted an ultrastructural analysis 
using TEM. For visualization, we associated biotinylated pDNA with about 2 
gold clusters using labelled neutravidin molecules, and complexed with respec-
tive peptides. 
 NF1/pDNA NPs associated with the cell-surface as small clusters that con-
tained 1–10 NA-gold labels, suggesting the entrapment of 1–5 pDNA molecules 
in a nanocomplex (Paper III, Fig. 6a,b). The NF1/pDNA NPs were frequently 
associated with membrane ruffles at the cell surface. Occasionally, the mem-
brane ruffles had fold back to the plasma membrane, encapsulating NF1/pDNA 
NPs in the resulting macropinosome (Paper III, Fig. 6b). In addition, 
NF1/pDNA NPs were detected in small (50–100 nm) membrane pits that re-
sembled caveolar invaginations as judged by their size and morphology (Paper 
III, Fig. 6a). NF51/pDNA NPs associated with the cell-surface in a similar 
manner with NF1/pDNA NPs – the nanocomplexes contained 1–10 NA-gold 
clusters (Paper III, Fig. 6c,d). In line with NF1/pDNA NPs, these complexes 
were often associated with membrane ruffles or localized in their close proxim-
ity (Paper III, Fig. 6c,d).  
 Our TEM data suggested together with experiments using pharmaceutical 
inhibitors that macropinocytosis is involved in both NF51- and NF1- mediated 
pDNA delivery. NF1, however, employs also receptor-mediated endocytosis 
(CME, caveolin-mediated endocytosis) for the intracellular delivery of pDNA. 
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4.3.3. Intracellular trafficking of NF/pDNA NPs 

Because of different response of NF1/pDNA and NF51/pDNA to chloroquine 
treatment we speculated whether NF1 and NF51 might have distinct intra-
cellular trafficking paths. We examined the integrity of the NF/pDNA NPs 
during the cellular uptake and subsequent trafficking using double-labelled 
NF/pDNA nanocomplexes, where CPP and plasmid were labelled with different 
fluorophores. This approach allowed us to track their uptake in real time using 
confocal laser scanning microscopy. In order to be able to track the rearrange-
ments in the nanoparticles, we optimized their composition to yield equal signal 
of both fluorophores, displaying complexes in a yellow colour in a combined 
image.  
 We incubated HeLa cells with double-labelled NF/pDNA nanocomplexes 
where CPP was labelled with green light emitting fluorescein and plasmid was 
labelled with red light emitting rhodamine. After 2 h of incubation, NF51 was 
still associated with pDNA in cells (yellowish signal of complexes) (Paper III, 
fig. 3d). However, NF1/pDNA NPs turned red (Paper III, Fig. 3b). The shift of 
NF1/pDNA NPs to red colour was probably caused by the maturation of early 
endosomes into late endosome, where the drop of pH to 5–6 drastically de-
creased the green signal. The loss of green signal could have been caused by the 
partial dissociation of NF1 from pDNA. These observations indicated that 
NF51/pDNA complexes might exploit endosomal pathways in which vesicles 
are kept near-neutral (Räägel et al. 2009), or the complexes interfere with the 
acidification of endosomes.  
 Interestingly, in case of both peptides we detected a fraction of peptide 
bound to the plasma membrane of cells that did not co-localize with plasmid 
(Paper III, Fig. 3, arrows). The free peptide was distributed all over the mem-
brane and did not localize close to NF/pDNA nanocomplexes. 
 Next, we performed an ultrastructural analysis by TEM to further examine 
the intracellular localization of NF/pDNA NPs. After 4 h of incubation both 
NF1/pDNA- and NF51/pDNA-containing endosomes localized in the central 
region of the cell (Paper III, Fig. 6e,f). Almost all NF1/pDNA NPs stayed en-
trapped in multivesicular bodies, and we rarely detected NA-gold in cytoplasm 
(Paper III, Fig. 6e). In contrast, we detected about 1/10th of total intracellular 
NF51/pDNA particles in cytoplasm after 4 h of incubation (Paper III, Fig. 6f). 
NF51/pDNA NPs were able to disrupt the limiting endosomal membrane and 
pave their way to the cytoplasm easier/faster compared to NF1/pDNA NPs.
 Although we detected NA-gold labels in cytoplasm in case of both, 
NF1/pDNA and NF51/pDNA NPs, we could not detect these in the nuclei of 
cells. This indicates that the translocation into nucleus is either a rare process, or 
4 h of incubation is not sufficient to reach to the nucleus in amounts that are 
easily detectable by TEM. 
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4.3.4. Scavenger receptors are involved in the uptake of NF/pDNA NPs 

In our previous publication (Paper I) we demonstrated that SCARAs are in-
volved in the uptake of PF14/pDNA NPs. Since both NF/pDNA NPs obtain 
negative ζ-potential in the presence of serum proteins we speculated whether 
SCARAs can also be involved in the uptake of NF/pDNA NPs. By pretreating 
cells with inhibitory ligands of SCARAs (poly I, fucoidan, dextran sulfate) the 
transfection activity of NF-mediated pDNA decreased significantly, while pre-
treatment with poly C, galactose, and chondroitin sulphate did not have any 
respective effect (Paper III, Fig. 2a,b, Paper III, Fig. S2). This data suggests that 
scavenger receptors are involved in the cellular uptake of NF/pDNA NPs. 
 We found earlier (Paper I) that particularly scavenger receptors from class 
A, SCARA3 and SCARA5 are essential for the cellular uptake of CPP/nucleic 
acid NPs. Therefore, we examined whether SCARA3 and/or SCARA 5 are also 
important for the cellular uptake of NF/pDNA NPs. Indeed, pretreatment of 
HeLa cells with respective siRNAs yielded ≥85% inhibition of transfection with 
both peptides, while scrambled siRNA did not affect the transfection efficacy 
(Paper III, Fig. 2c,d). 
 
Taken together, in Paper III we showed that NF1 and NF51 condense pDNA 
into nanoparticles which have a size of about 60 nm in diameter when formed in 
water. Similarly to PF14/pDNA (Paper II), the addition of tissue culture media 
increased the size of the nanoparticles about 2–3-fold, and the particles obtained 
a slightly negative ζ-potential. The association of NF1/pDNA and NF51/pDNA 
nanocomplexes to scavenger receptors SCARA3 and SCARA5 at the plasma 
membrane is essential for the cell-entry. Both studied NickFects are internalised 
by cells via endocytosis, however, specific mechanisms vary. NF51/pDNA NPs 
are taken up by cells mainly via macropinocytosis, whereas NF1/pDNA NPs 
utilize several endocytic mechanisms in parallel, including macropinocytosis 
and clathrin- and caveolin-mediated endocytosis. 
 
 

4.4. Characteristics of Cell-Penetrating Peptide/Nucleic 
Acid Nanoparticles (Paper IV) 

In paper IV we systematically examined the size and morphology of 
CPP/nucleic acid nanoparticles using negative staining TEM and dynamic light 
scattering. We included four most promising and efficient st-TP10 based CPPs 
to the study – PF6, PF14, NF1 and NF51, and analysed the size and morphology 
of resulting nanoparticles using three types of nucleic acids (SSO, siRNA, 
pDNA) which differ in their size, chemical composition and biological activity. 
In addition we examined the effect of fluorescent or (nano)gold label on nucleic 
acids to the physical properties of the nanoparticles. 
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4.4.1. CPPs pack pDNA to nanoparticles which  
have similar size and morphology 

In order to examine the size and morphology of CPP/nucleic acid NPs we 
conducted a negative staining TEM analysis. We used CPP: pDNA charge ratio 
3 for the formation of nanoparticles because this ratio has previously yielded 
high transfection rates in functional cell-based assays (Paper I, Paper III). We 
found that all studied CPPs complexed with pDNA formed NPs which had 
homogeneous shape (Paper IV, Fig. 1). However, the morphology of the NPs 
depended on the primary sequence of the used peptide. PF6/pDNA NPs were 
spherical (AR 1.1±0.1), most NF1/pDNA and NF51/pDNA NPs were also 
spherical but a small fraction of the NPs had irregular or elongated shape (AR 
≤1.2). In contrast, PF14/pDNA nanoparticles had varying shapes which ranged 
from spherical and elliptic to branched and ones with irregular shape (AR 
1.4±0.5) (Paper IV, Fig. 1; Paper IV, Table 2). 
 To analyse the size of CPP/pDNA nanoparticles we measured the 2D projec-
tions of 600 individual NPs from three different experiments using Fiji image 
processing software package and calculated their circle equivalent diameter. We 
found that although different in their chemical composition, the studied 
CPP/pDNA NPs had similar mean size ranging from 50–60 nm depending on 
the used peptide (Paper IV, Figure 2a,b). 
 We have previously reported that the transfection efficiency of CPP-trans-
duced pDNA depends on the CR of used CPP and nucleic acid. Specifically, we 
showed that PF14/pDNA NPs yield the highest biological activity at CR 3 and 
in some cell-lines NPs formed at CR 1 and CR 2 lead to only slight expression 
of transgene (Paper I). Thus, we examined the size and morphology of 
CPP/PF14 nanocomplexes formed at different CRs (CR 1, CR 3, CR 5). Inter-
estingly, only a few PF14/pDNA NPs were formed at CR 1 and most of these 
were agglomerated. However, using CR 3 or CR 5 led to the formation of NPs 
which did not agglomerate and had uniform size and morphology (Paper IV, 
Fig. S4). 
 In addition, we examined whether NFs and PFs could form NPs on their 
own. However, we did not detect any NPs in the respective samples. 
 
 

4.4.2. CPPs form smaller nanoparticles with SSO and  
siRNA compared to pDNA 

In order to analyze the size and morphology of CPP/oligonucleotide NPs we 
included two different types of oligonucleotides to the study – SSO (2ʼOMe 
phosphorothioate ON; 18 nucleotides) and siRNA (42 nucleotides). We used 
MR 10 (CPP: peptide) for the formation of complexes because we previously 
showed that this molar ratio leads to the highest bioactivity of SSOs in func-
tional cell-based assays (Paper II, Fig. 4b). The CPP/oligonucleotide complexes 
had similar shapes as in case of CPP/pDNA NPs (Paper IV, Fig. 3). While PF6 
and NF51 formed spherical NPs, PF14 NPs had varying shapes ranging from 
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spherical to non-spherical elongated structures. Frequently, the smaller NPs had 
associated into larger particles. Unexpectedly, we only detected a few 
NF1/siRNA NPs by TEM. We speculated whether the negative charge of the 
phosphoryl group in the primary sequence of NF1 could reduce the complexa-
tion efficacy of these NPs, and thus, tested if NF1 could form NPs with siRNA 
at higher peptide concentrations. Indeed, NF1 efficiently formed NPs with 
siRNA at MR 20 and MR 30, and these had similar size and shape to 
PF6/siRNA and NF51/siRNA (Paper IV, Fig. 3). 
 The CPP/SSO and CPP/siRNA NPs had significantly (p<0.001) smaller size 
compared to CPP/pDNA NPs ranging from 27–38 nm and 32–34 nm in dia-
meter, respectively (Paper IV, Fig. 2a,c,d). The bigger size of CPP/pDNA NPs 
compared to CPP/oligonucleotide NPs could be explained by the different size 
of used nucleic acids. Since pGL3 plasmid (Mw=3.1x106g/mol) is a much 
larger molecule compared to SSO (Mw= 5900 g/mol) or siRNA (Mw= 14300 
g/mol) the dimensions of the pDNA could determine the size of the forming 
NPs. 
 In line with CPP/pDNA NPs, the transfection efficiency of CPP/SSO NPs 
has been shown to be dependent on the concentration ratio of CPP and SSO. For 
example, PF14/SSO NPs showed the highest splice correction efficiency at MR 
5, and the activity was about three times lower at MR 20 (Ezzat et al. 2011). 
Therefore, we analyzed the size and morphology of PF14/SSO nanocomplexes 
formed at different MRs (MR 5, MR 10, MR 20). We found that PF14 effi-
ciently formed NPs with SSO at all tested MRs and their size and shape were 
not dependent on the used peptide concentration (Paper IV, Fig. S3). 
 
 

4.4.3. Dynamic light scattering overestimates  
the size of CPP/nucleic acid NPs 

Dynamic light scattering (DLS) is the most commonly used method to measure 
the size of nanoparticles. We performed DLS analysis of PF14 and PF6 NPs 
with nucleic acids. DLS estimated that PF14/pDNA and PF14/SSO NPs had an 
average diameter of 94 nm and 142 nm, respectively. The diameter of 
PF6/pDNA and PF6/SSO NPs was 70 and 64 nm, respectively (Paper IV, Fig. 
4). We noticed that in case of both peptides, the NPs formed with SSO had two 
distinct populations of particles. The fraction of smaller PF14/SSO and 
PF6/SSO NPs had a diameter of 25 nm and 23 nm, and the fraction of larger 
NPs had a size of 64 nm and 142 nm, respectively. The larger size of NPs 
measured by DLS compared to negative staining TEM could be explained by 
the higher sensitivity of DLS to detect larger particles as these dominate the 
scattering of light that is detected (Troiber et al. 2013). In addition, DLS mea-
sures the hydrodynamic size of the NPs rather than the actual diameter, which 
increases the estimated size of NPs (Huang et al. 2010, Troiber et al. 2013) 
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4.4.4. The fluorescent or (nano)-gold label on nucleic acid does not  
affect the gross-characteristics of CPP/nucleic acid nanoparticles 

Recently, we used fluorescence and transmission electron microscopy using 
fluorescent or (nano)gold label on nucleic acid molecules to examine the cellu-
lar uptake and intracellular trafficking of CPP/nucleic acid nanocomplexes 
(Oskolkov et al. 2011, Paper I, Paper II, Paper III). We analyzed whether the 
addition of Cy5 or gold label affects the size and morphology of CPP/nucleic 
acid nanocomplexes. We used Cy5-SSO, SSO-NanogoldTM (SSO-NG), siRNA-
NanogoldTM (siRNA-NG) and biotinylated pDNA complexed with neutravidin-
gold (pDNA-b-NA-gold) for the formation of nanocomplexes with CPPs. 
 We found that PF6 and PF14 NPs formed by using siRNA-NG had similar 
size and shape with NPs formed with unlabelled siRNA (Paper IV, Fig. S2). 
Surprisingly, we detected only a few NPs with both NickFects using siRNA-
NG, and these were frequently agglomerated. All studied peptides formed NPs 
with SSO-NG but these were slightly smaller compared to NPs formed with 
unlabelled SSO. Since SSO is two times smaller than siRNA, it is probable that 
the NanogoldTM label affects more the formation of CPP/SSO NPs compared to 
CPP/siRNA NPs. In addition, since the used SSO has modified backbone, this 
could together with NanogoldTM label influence the morphology of resulting 
CPP/SSO NPs more than in case of CPP/siRNA NPs. 
 The addition of Cy-5 label did not affect the properties of PF6/SSO or 
PF14/SSO NPs and these had similar size and morphology as unlabelled NPs. 
Both NickFects, however, formed NPs with Cy5-SSO less efficiently compared 
to unlabelled SSO, and the former were more often agglomerated (Paper IV, 
Fig. S2). 
 In order to analyse whether the addition of gold label to pDNA influences 
the morphology of CPP/pDNA NPs we labelled biotinylated pDNA with neu-
travidin gold, and formed nanocomplexes with NF51 and conducted negative 
staining TEM analysis. We found that the association of NA-gold label to 
pDNA did not change the morphology of NF51/pDNA NPS compared to unla-
belled NF51/pDNA NPs. To analyse the degree of labelling we counted the 
number of gold labelled NPs, and found that out of 480 NPs 298 (62%) had 
associated one or more gold labels. The majority of NPs (73%) had associated 
1–3 gold tags, and only 10% had associated more than 7 gold labels. 81% of 
gold particles had attached to the NPs, showing a high labelling efficacy (Paper 
IV, Fig. S5). 
 Taken together, our data shows that using labelled nucleic acids does not 
influence the gross-characteristics of CPP/nucleic acid nanocomplexes. 
 
Collectively, in Paper IV, we examined the size and morphology of CPP/nucleic 
acid complexes. We found that PFs and NFs condense nucleic acids into NPs of 
homogeneous size ranging from 30–60 nm in diameter depending on the type of 
used nucleic acid and peptide. Importantly, the NPs did not aggregate when 
formed in water. The shape of CPP/nucleic acid complexes depended on the 



55 

sequence of used peptide. The major determinant of the NP size was the molec-
ular weight of condensed nucleic acid. The fluorescence or (nano)gold label on 
nucleic acid did not affect the gross-characteristics of CPP/nucleic acid nano-
complexes. 
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5. DISCUSSION 

The development of nucleic acid-based therapeutics is an emerging field of 
molecular medicine due to the ability of nucleic aids to specifically regulate the 
function of genes. Since naked nucleic acids do not effectively enter cells and 
can be quickly degraded upon administration, there is a strong need for the de-
velopment of delivery vehicles to facilitate the cellular delivery of nucleic acids. 
An ideal delivery vector should effectively internalize nucleic acids into cells 
without being toxic, and importantly, promote the endosomal release of cargo in 
order to reach their target sites in the cytoplasm or nucleus of cells. Nano-
particle-based delivery vectors such as polyplexes or lipoplexes which pack 
nucleic acids into particles generally <100 nm in diameter have shown high 
potential in the cellular delivery nucleic acids, and many such systems are cur-
rently under clinical evaluation for the treatment of various diseases (reviewed 
in Yin et al. 2014). The advantages of nanoparticle-based drug delivery systems 
are their improved stability, biocompatibility and extended drug-release kinetics 
compared to non-nanoparticulate systems. Some recently designed cell-pene-
trating peptides (CPPs) also condense nucleic acids into particles upon co-incu-
bation of CPP and cargo. During the last 20 years, various studies have shown 
that CPP/nucleic acid complexes effectively internalize to cells and trigger high 
bioactivity of cargo both in vitro and in vivo (reviewed in Margus et al. 2012). 
Regardless of promising experimental data, the CPP/nucleic acid non-covalent 
delivery systems have not yet reached clinical trials. One reason behind this is 
the insufficient information of the physical-chemical characteristics of the 
forming CPP/nucleic acid nanocomplexes such as their size, shape, charge and 
stability. Yet, in order to be considered for implementation in biomedicine the 
properties of a drug-delivery system need to be characterized in detail. In addi-
tion, very little is known about the cell-entry mechanisms and intracellular traf-
ficking of CPP/nucleic acid complexes. However, the understanding of the 
underlying mechanisms of cell-entry and intracellular trafficking are important 
to avoid undesired side effects and to refine their properties to trigger higher 
bioactivities of cargo. 
 The physical-chemical characteristics of nanoparticles are of utmost impor-
tance in order to be used in vivo in experimental models and medical settings. 
One of the most important characteristics of nanoparticles is their size as it 
determines whether the particles are engulfed by cells, and which mechanisms 
are harnessed for their cellular uptake. In the current study we used PepFect and 
NickFect type CPPs and analysed the size of their nanocomplexes with nucleic 
acids using dynamic light scattering (DLS) and negative staining transmission 
electron microscopy (TEM) analysis. TEM analysis revealed that the studied 
CPPs condensed nucleic acids into homogeneous nanoparticles which did not 
aggregate and had a size in range of 50-60 nm (CPP/pDNA) and 30–40 nm 
(CPP/oligonucleotides) in diameter. According to DLS the size of CPP/pDNA 
nanoparticles varied from 60–70 nm (94 nm in case of PepFect14/pDNA) and 
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CPP/SSO complexes had a diameter of 60–80 nm (140 nm in case of Pep-
Fect14) depending on the used peptide. The higher diameter of nanoparticles 
measured by DLS compared to TEM have been earlier shown in various studies 
(Huang et al. 2010), and this can result from several methodological aspects. 
Firstly, the DLS analysis measures the hydrodynamic radius of nanoparticles 
rather than the actual size which could increase the diameter of NPs (Huang et 
al. 2010, Troiber et al. 2013). Secondly, in DLS analysis the signal from small 
particles can be underestimated in the background of larger particles (Troiber et 
al. 2013). Nevertheless, according to both DLS and TEM results, PepFects and 
NickFects condense nucleic acids into nanoparticles of small size (below 100 
nm) and rather narrow size distribution. Importantly, the nanoparticles did not 
aggregate when formed in water. According to literature, the optimal diameter 
for the cellular uptake of nanoparticles is about 50–60 nm (Zhang et al. 2004, 
Chithrani et al. 2006, Chithrani and Chan 2007), and the upper limit for recep-
tor-mediated endocytosis is about 200 nm. Larger nanoparticles can be inter-
nalized to cells via macropinocytosis. Our results clearly indicated that the 
studied CPPs condense nucleic acids into particles which have a suitable size 
range for the uptake via receptor-mediated endocytosis.  
 Interestingly, we found that all studied CPPs formed larger nanoparticles 
with pDNA than with oligonucleotides. The larger diameter of CPP/pDNA NPs 
compared to CPP/oligonucleotide NPs could be explained by the different size 
of used nucleic acids. Since pGL3 plasmid (MW= 3.1 MDa) is a much bigger 
molecule compared to SSO (Mw= 5.9 kDa) or siRNA (Mw= 14.3 kDa) the 
dimensions of plasmid DNA should determine the size of the forming NPs if 
one pDNA molecule is present in a nanoparticle. To our knowledge this is the 
first study showing that the size of CPP/nucleic acid nanoparticles depends on 
the type and molecular weight of nucleic acid. Interestingly, the label on the 
nucleic acid did not influence the size and morphology of forming nano-
particles. Even the colloidal gold label with 10 nm diameter did not interfere 
with the formation of CPP/pDNA nanoparticles or modify their properties. This 
suggests that both the fluorescent and gold-clusters can be coupled to nucleic 
acids for assessing their delivery by CPPs to cells and tissues. 
 Importantly, the formation of NickFect and PepFect nanocomplexes with 
nucleic acids for in vivo delivery studies has been performed in identical man-
ner with our TEM experiments, e.g. the complexes were formed in water for 
30–60 minutes. By that time, stable nanoparticles are formed, and the size and 
morphology of these do not change in time (even after 3 days of incubation in 
water at room temperature) as we have confirmed by TEM and DLS (our un-
published data). The only difference between the complexes used in our ex-
periments compared to the complexes used for the in vivo studies is that we did 
not add glucose to the complexes prior the analysis. However, the addition of 
glucose which is routinely used for in vivo administration of CPP/nucleic acid 
formulations did not change the size or morphology of the particles (K. 
Freimann, unpublished data). 
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 Very limited data has been previously published about the size of 
CPP/nucleic acid nanocomplexes. Recently, van Asbeck et. al analysed the size 
of CPP/siRNA complexes by dynamic light scattering using variety of CPPs 
(van Asbeck et al. 2013). They found that R9, r9, hLF and PepFect14 formed 
complexes with siRNA which had a size of 150–200 nm. Importantly, the size 
of the complexes did not depend on the used molar ratio of CPP and siRNA. In 
Paper IV we also examined whether the molar ratio of CPP and SSO could af-
fect the size and morphology of the PepFect14/SSO complexes, and found by 
negative staining TEM analysis that their size and shape were not influenced by 
the amount (we used molar ratios 5–20 for examination) of CPP used for the 
formation of nanocomplexes. Interestingly, van Asbeck et. al found that in case 
of some peptides (TP10, Tat, hLF, PepFect6) the size of CPP/siRNA complexes 
depended on the used molar ratio. For example, TP10 did not form nano-
particles below molar ratio 20, but aggregated siRNA at high (≥30) molar ratios. 
PepFect6, in contrast, formed largest particles (around 200 nm) at molar ratio 15 
and at lower (5) or higher (30–40) molar ratios smaller particles (around 100 
nm) were formed. Although we analysed the size and morphology of Pep-
Fect6/nucleic acid nanoparticles in Paper IV, we did not vary the amount of 
peptide for the formation of particles. Nevertheless, negative staining TEM 
helps to distinguish whether the size differences of CPP/siRNA complexes at 
different molar ratios measured by DLS were caused by aggregation or increase 
of the size of particles. Our negative staining TEM images revealed that Pep-
Fects and NickFects pack nucleic acids into nanoparticles of homogeneous size 
and morphology. In case of all studied peptides except PepFect14 the particles 
were spherical or near-spherical. In terms of size, size distribution and mor-
phology, the CPP/nucleic acid nanocomplexes resembled lipoplexes or poly-
plexes. For example, Gilleron et. al showed that lipid nanoparticles loaded with 
siRNA were spherical and had a mean diameter of about 60 nm and more than 
80% of particles had a size range of 40–120 nm (Gilleron et al. 2013). 
 Negative staining TEM enabled us to directly visualize the CPP/nucleic 
nanocomplexes, and provided essential information about their size and shape. 
However, in order to gain more detailed information about the morphology of 
the NickFect and PepFect nanoparticles with nucleic acids scanning electron 
microscopy or atomic force microscopy should be used. Recently, Deshayes et. 
al showed by scanning electron microscopy and atomic force microscopy that 
CADY peptide condenses siRNA into globular particles of 70–80 nm in dia-
meter, and the individual particles are composed of smaller spheres, forming 
“raspberry”-like structures (Deshayes et al. 2012). The resolution of negative 
staining TEM did not reveal whether PFs and/or NFs also pack oligonucleotides 
into similar structures. However, in case of PF14/nucleic acid NPs we fre-
quently detected that smaller complexes had associated with each other forming 
larger elongated assemblies. PF6/nucleic acid complexes, in contrary, were 
almost ideal spheres with both small oligonucleotides and larger plasmid DNA, 
and we consider it highly unlikely that these were formed by association of 
several smaller sub-particles. 
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 DLS analysis revealed that the size of NickFect and PepFect nanocomplexes 
with nucleic acids increased 2–3-fold (up to 160–200 nm in diameter) when 
incubated in tissue culture media which contained serum proteins. This was 
probably caused by the accumulation of serum proteins onto CPP/nucleic acid 
nanocomplexes, forming a “protein corona”. All types of nanoparticles absorb 
some amount of plasma proteins on their surface in biological milieu, and the 
composition of the protein coat depends on various characteristics of NPs, e.g. 
surface chemistry, size and charge (Walkey et al. 2014). Interestingly, we found 
that the size of PepFect14/pDNA nanoparticles increased 2-fold and 3-fold also 
in tissue culture media without serum proteins and in physiological salt solu-
tion, respectively, compared to nanoparticles formed in water. The reasons be-
hind this are not clear but we can consider surreal possibilities for such behav-
iour of nanoparticles. The change in ionic concentrations in tissue culture media 
or physiological solution might have caused the reorganization of the nanocom-
plexes and result more loosely packed nanocomplexes. On the other hand, in 
these conditions nanoparticles could also associate to form bigger assemblies. 
Similarly to our results, Asbeck et. al also found by DLS that in physiological 
solution CPP/siRNA nanocomplexes form larger particles (van Asbeck et al. 
2013). The authors of study suggested that salt ions form bridges between 
CPPs, which results bigger and more loosely packed particles.    
 The vast majority of studies devoted to examining the specific endocytic 
mechanisms involved in the cellular uptake of delivery vectors and their cargos 
have employed pharmacological inhibitors to suppress individual endocytic 
pathways in cells. Yet, it has became evident that pharmacological inhibitors 
might lack specificity and could yield misleading results (Ivanov 2008). In addi-
tion, the inhibition of one endocytic pathway is usually compensated by upreg-
ulation of the cellular uptake of nanocomplexes through other routes, which 
could hamper the interpretation of obtained data. Thus, in addition to inhibiting 
specific endocytic pathways we employed TEM analysis to examine the cellular 
uptake routes of PepFect and NickFect nanocomplexes with nucleic acids. We 
found that the studied CPPs (PepFect14, NickFect51, NickFect1) mediated the 
cellular uptake of nucleic acids via endocytosis, and the involved specific endo-
cytic routes depended mostly on the used CPP. In Paper I we demonstrated that 
PepFect14/pDNA nanocomplexes utilize caveolin-mediated endocytosis and 
macropinocytosis for the internalization to cells. In Paper III we used TEM 
analysis and pharmacological inhibition of the main endocytic routes, and found 
that NickFect51/pDNA nanocomplexes induce mainly macropinocytosis, 
whereas NickFect1/pDNA complexes trigger various endocytic events simulta-
neously including macropinocytosis, caveolin-mediated endocytosis and clath-
rin-mediated endocytosis to gain access to the interior of cells. 
 Only a few reports are published about cell-entry mechanisms of 
CPP/nucleic acid non-covalent complexes. Hassane et. al found that PepFect6 
complexes with SSO internalize to cells via endocytosis since the cellular up-
take of the complexes was significantly reduced when incubation was per-
formed at 4ºC, which abolishes the energy-dependent cellular uptake (Hassane 
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et al. 2011). In addition, they demonstrated that the complexes are internalized 
by clathrin-mediated endocytosis because chlorpromazine and potassium deple-
tion severely reduced the activity of splicing switching activity of Pep-
Fect6/SSO complexes in HeLa pLuc 705 reporter cells. Yet, inhibition of cave-
olin-dependent endocytosis or macropinocytosis did not affect the bioactivity of 
the complexes. In contrast, we very recently examined the cell-entry mecha-
nisms of PepFect14/SSO complexes, and found that the bioactivity of SSO in 
HeLa pLuc 705 cells was significantly reduced in the presence of amiloride and 
nystatin which impede macropinocytosis and caveolin-mediated endocytosis, 
respectively (Juks et al. 2015). Similarly to our results, spherical nucleic acids 
translocate into cells via lipid raft/caveolin-mediated endocytosis (Choi et al. 
2013).  
 The effectiveness of endocytic pathways which yield highest bioactivity of 
CPP/nucleic acid nanocomplexes is not very clear. Rehman et. al recently 
analysed the cellular uptake and bioactivity of lipoplexes and polyplexes, and 
found that lipoplexes internalized to cells via clathrin-mediated endocytosis and 
polyplexes utilized both clathrin- and caveolin-mediated endocytosis (ur Reh-
man et al. 2013). In case of liposomes, the cellular uptake via clathrin-mediated 
endocytosis led to the high level expression of luciferase from delivered pDNA. 
However, in case of polyplexes, only the uptake via caveolin-mediated endo-
cytosis ensured the high activity of delivered cargo. Therefore, the effective 
endocytic pathway (or pathways) leading to high biological response is perhaps 
mostly determined by the nature of delivery vector. Macropinosomes are sug-
gested to be more leakier compared to other endocytic vesicles, which could be 
beneficial for the release of drug-delivery vectors and their cargo from endo-
somal vesicles, and thus, yield higher bioactivity of delivered molecules (Meier 
et al. 2002). This pathway could be harnessed for the delivery of drugs into 
cancer cells or macrophages in which macropinocytosis is highly active. How-
ever, since clathrin-mediated endocytosis is the major endocytic pathway (about 
90% of endocytosed material is internalized by clathrin-mediated endocytosis in 
cultured cells) (Bitsikas et al. 2014) this pathway could contribute most signifi-
cantly to yielding bioactivity of delivered cargo in vivo. On the other hand, high 
expression of caveolin-1 and caveolin-2 in some cell types (e.g smooth muscle 
cells and adipocytes) could favour the delivery of cargo through caveolin-
mediated endocytosis. Importantly, the transcytosis of cargo across the endo-
thelial barrier occurs through caveolin-mediated endocytosis (reviewed in 
Simionescu et al. 2009). For example, 50–70% of lung endothelial cell plasma 
membranes are occupied by caveolae, and therefore, caveolin-mediated endo-
cytosis could be exploited to deliver therapeutics into lungs (reviewed in Chras-
tina et al. 2011). 
 Inside cells the studied CPP/nucleic acid nanocomplexes localized mainly 
inside endosomes. By 4 h of incubation the early endosomes had matured into 
late endosomes as revealed by their multivesicular content. Importantly, we 
rarely detected nanocomplexes in lysosomes after 4 h of incubation. We 
recently analysed the intracellular trafficking of PF14/SSO nanocomplexes also 
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by confocal laser scanning microscopy. Although the nanocomplexes-con-
taining endosomes translocated to the perinuclear region of cells, these did not 
co-localize with Lysotracker, which specifically marks acidic compartments, 
mostly lysosomes, even after 4 h of incubation (Juks et al. 2015). 
 In case of all peptide/nucleic acid complexes we occasionally detected that 
the endosomal membranes of multivesicular bodies had lost their intactness, 
paving the way for the nanoparticles to escape to cytosol. We have previously 
shown by TEM that NickFect1/SSO and NickFect2/SSO nanocomplexes 
rupture the endosomal membranes resulting in their release from entrapping 
vesicles (Oskolkov et al. 2011). In addition we have conducted a TEM analysis 
to examine the intracellular trafficking of cationic polymer/SSO nano-
complexes, and found that similarly to NickFects and PepFects, a fraction of 
these complexes were released during 4 h of incubation from endosomes with 
multivesicular bodiesʼ morphology (T. Lehto, unpublished data). Still, in case 
of all studied peptides in Papers I–III the vast majority of the CPP/nucleic acid 
complexes remained entrapped inside endosomes. Similarly, Gilleron et. al 
found that in case of lipid nanoparticle encapsulated siRNAs only a small 
fraction (1–2%) of cargo is released from endosomes and the cytosolic release 
occurred only at a defined stage of endosomal progression (Gilleron et al. 
2013). We recently revealed by quantitative TEM that about 8% of PepFect14/ 
SSO complexes localized in cytosol after 4 h of incubation (Juks et al. 2015). 
Thus, the endosomal escape probably remains the limiting step in efficient 
delivery of nucleic acids via nanoparticulate systems.  
 Recently, Wittrup et. al demonstrated that lipid-encapsulated siRNAs were 
released from endosomes which had associated Rab5 and Rab7 meaning that 
the release event occurred from maturing endosomes (Wittrup et al. 2015). 
Since the diffuse signal of fluorescently labelled siRNA spread all over cyto-
plasm within seconds after the release, they suggested that siRNA rather than 
intact lipid-encapsulated siRNAs were released from endosomes. Importantly, 
only one release event was detected from each individual endosome, indicating 
that the endosomal membrane was only temporarily damaged during the 
release. In parallel with the release of siRNA from endosomes the activation of 
autophagy was triggered, resulting the formation of autophagosomes which 
eventually fused with lysosomes. Similar studies should be conducted for 
CPP/nucleic acid nanocomplexes to clarify how CPP/nucleic acid complexes or 
nucleic acids themselves are released from endosomes. 
 The endosomal release could occur through “proton sponge” mechanism 
caused by endosomal acidification. Namely, during maturation of early endo-
somes to late endosomes, the pH of vesicles is lowered by H-ATPase, which 
results in the protonation of amine groups of peptide and influx of counter-ions 
into the lumen of endosomes. This, in turn, triggers the intake of water into the 
endosomes, leading to osmotic swelling, which could rupture their membranes, 
resulting in the release of nanoparticles. This mechanism is involved in the 
endosomal release of polyplexes (Boussif et al. 1995). Whether this mechanism 
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is involved also in the release of CPP/nucleic acid nanocomplexes, should be 
addressed in future studies. 
 In order to function in gene regulation pDNA or SSOs need to translocate 
into the nucleus of transfected cells. Indeed, in case of NickFect51/SSO nano-
complexes a small fraction of SSOs had translocated into the nucleus of HeLa 
pLuc 705 cells after 4 h of incubation, and these were detected in TEM as sole 
gold particles, suggesting that SSOs rather than CPP/SSO complexes had trans-
located into the nucleus. We recently showed that SSOs delivered into cells by 
NickFect1 or NickFect2 also localize in the nucleus after 4 h of incubation in 
HeLa pLuc 705 cells (Oskolkov et al. 2011). In addition, we examined the intra-
cellular trafficking of PepFect6 and PepFect5 complexes with SSOs, and found 
that similarly to NickFects, a fraction of oligonucleotides translocated into the 
nucleus during 4 h of incubation (our unpublished data). Interestingly, we 
detected SSOs delivered by PepFect5 in the nucleus as single gold particles, 
however, in case of PepFect6, the nuclear SSOs typically localized as clusters of 
2–3 gold particles. Nevertheless, we detected the nanocomplexes of PepFects 
and NickFects with SSOs in the nucleus very rarely during 4 h of incubation. 
One reason behind this could be that the 4 h of incubation time is not sufficient 
for the SSOs to reach nuclei of cells in amounts that are easily detected by 
TEM. We did not use longer incubation times because the small (d=1.4 nm) 
nanogold tag would be dissociated in the reducing environment of cytoplasm 
causing the loss of signal. In contrast to oligonucleotides, we did not detect 
labelled pDNA in the nuclei of cells during 4 h of incubation. Probably, the 
translocation of pDNA into nucleus is even slower process than the trans-
location of oligonucleotides. This is supported by earlier finding that the PEI-
mediated cytosolic delivery of pDNA occurs in a similar manner with oligo-
nucleotide delivery, but in contrast to oligonucleotides which were highly 
mobile in cytosol and accumulated into nucleus, pDNA remained immobile in 
cytosol (ur Rehman et al. 2013). However, our functional assays revealed that 
NickFect51, NickFect1 and PepFect14 complexes with pDNA yielded high 
gene expression in various cell types during 24 h of transfection. Perhaps, the 
nuclear accumulation at levels detectable in TEM occurs after 4 h of incubation 
of CPP/pDNA complexes in cells. In addition to Nano-gold labelled pDNA we 
used colloidal gold (10 nm) labelled pDNA to visualize the CPP/pDNA 
complexes in cells. The large colloidal gold particles remain stable in the 
reducing environment of the cytosol of cells for longer period of time compared 
to small nanogold label, and thus, longer incubation times could in principle be 
used to analyse the presence of pDNA in the nucleus. However, the pores in 
nuclear envelope of cells are generally permeable only for molecules with 
molecular mass below 40 kDa (about 10 nm in diameter) (reviewed in Wente 
and Rout 2010). siRNA and SSOs have a suitable size, whereas pDNA is too 
large, even when condensed by CPPs, for the passive diffusion into the nuclei of 
cells. Therefore, while SSOs could passively diffuse through the nuclear 
membrane, other mechanisms should be involved in the nuclear uptake of 
CPP/plasmid complexes or pDNA. One hypothesis is that pDNA translocates 
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into the nucleus of cells during cell division. However, other mechanisms could 
also be used. One might speculate, that the nanocomplexes of CPP/pDNA or 
pDNA itself are reorganized for the translocation to nucleus despite of large 
size. For example, the mRNP particles of about 50 nm have been shown to re-
arrange into rod like structures, decreasing their diameter to around 25 nm after 
associating with the nuclear pore complex (Mehlin et al. 1992). Also, the fusion 
of CPP/pDNA complexes with the nuclear membrane can cause the nuclear 
translocation. Previously, it has been shown that lipoplexes can fuse with 
nuclear membrane, releasing the pDNA to the nucleus (Kamiya et al. 2002). 
Nevertheless, the understanding of mechanisms of how nucleic acids are 
delivered into the nuclei of cells is an intriguing topic and need to be studied in 
more detail. 
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SUMMARY 

Cell-penetrating peptides are efficient delivery vectors for various types of 
nucleic acids. CPPs can be coupled to nucleic acids either by covalent con-
jugation or by co-incubation of the peptide and cargo. Co-incubation of CPPs 
and nucleic acids leads to the formation of nanocomplexes due to electrostatic 
and hydrophobic interactions. However, the knowledge about the physical-
chemical properties and morphology of the forming nanocomplexes is still frag-
mentary and hinders their application in biomedicine. The cell-entry mecha-
nisms and intracellular trafficking of CPP/nucleic acid nanocomplexes are 
poorly understood, which impedes the further refinement of carrier peptides to 
achieve higher transfection efficacies.  
 Therefore, the focus of the current thesis was the characterization of the size, 
shape and charge of CPP/nucleic acid nanocomplexes using dynamic light 
scattering and transmission electron microscopy. Furthermore, the cell-entry 
mechanisms and intracellular trafficking of CPP/nucleic acid nanocomplexes 
were analysed using pharmacological inhibitors of endocytosis, siRNA techno-
logy, fluorescence and transmission electron microscopy. 
 
The main results of the current thesis are as follows: 
1. TP10-based CPPs from PepFect (PF6, PF14) and NickFect families (NF1, 

NF51) condense nucleic acids into nanoparticles (NPs) which have uniform 
size and morphology (Paper IV). 

2. The size of CPP/nucleic acid NPs depends on the type and molecular mass 
of nucleic acid. CPP/oligonucleotide nanocomplexes are smaller (d= ̴ 30 nm) 
than CPP/plasmid DNA nanocomplexes (d= 50–60 nm) (Paper IV). 

3. DLS overestimates the size of CPP/nucleic acid NPs (Paper IV). 
4. The shape of CPP/nucleic acid nanocomplexes depends on the peptide rather 

than the type of nucleic acid (Paper IV). 
5. NickFect and PepFect nanocomplexes with nucleic acid have a negative zeta 

potential in serum-containing tissue culture media (Paper I–III). 
6. Fluorescent or (nano-)gold label on nucleic acid molecule does not affect the 

gross-characteristics of CPP/nucleic acid nanocomplexes (Paper IV). 
7. NickFects and PepFects mediate the internalization of nucleic acids into 

mammalian cells by endocytosis, and the cellular uptake pathway(s) 
depend(s) on the used peptide (Paper I–III): 
 PF14/pDNA nanocomplexes utilize mainly caveolin-mediated endo-

cytosis and macropinocytosis to gain access to the interior of cells; 
 NF51/pDNA nanocomplexes are internalized by cells mainly via macro-

pinocytosis; 
 NF1/pDNA nanocomplexes utilize various endocytic pathways for the 

cellular uptake including caveolin- and clathrin- mediated endocytosis 
and macropinocytosis. 
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8. Scavenger receptor class A proteins SCARA3 and SCARA5 are involved in 
the cellular uptake of PepFect and NickFect nanocomplexes with plasmid 
DNA (Paper I and Paper III). 

9. Most of the PepFect and NickFect nanocomplexes with nucleic acids loca-
lize inside MVBs/late endosomes after 4 h of incubation. Only a small 
fraction of the nanocomplexes are released from endosomes by this time 
(Paper I–III). 
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SUMMARY IN ESTONIAN  

Rakku sisenevate peptiidi/nukleiinhappe komplekside  
kirjeldamine ja nende rakku sisenemise mehhanismid 

Nukleiinhapete abil on võimalik moduleerida rakkude geeniekspressiooni. Kõrge 
spetsiifilisuse ja madala kõrvalmõjude tekkeriski tõttu on nukleiinhapped kõr-
gelt hinnatud ravipotentsiaaliga molekulid. Bioloogilise funktsionaalsuse saavu-
tamiseks on vajalik nukleiinhapete sisenemine rakkudesse ning jõudmine siht-
kohta – rakutuuma või tsütoplasmasse. Suure molekulmassi ja negatiivse laengu 
tõttu ei ole aga nukleiinhapped võimelised vabalt läbima raku plasmamemb-
raani. Seetõttu on arendatud mitmesuguseid meetodeid, mille abil nukleiinhap-
peid rakkudesse transportida, ning üheks neist on rakku sisenevate peptiidide 
(RSP; i.k cell-penetrating peptide, CPP) kasutamine. RSPd on lühikesed, ena-
masti katioonsed ja/või amfipaatsed aminohappelised järjestused, mis on võime-
lised läbima rakkude plasmamembraani ning transportima rakkudesse bioaktiiv-
seid molekule, sh nukleiinhappeid. 
 RSPsid on nukleiinhapetega võimalik siduda kahel erineval viisil kasutades 
kas kovalentset või mittekovalentset strateegiat. Kovalentse strateegia puhul 
moodustatakse peptiidi ja lastmolekuli vahele kovalentne side. Mittekovalentse 
strateegia puhul aga toimub nukleiinhapete seondumine RSPdega peamiselt 
elektrostaatiliste ja hüdrofoobsete intraktsioonide vahendusel. Mittekovalentse 
strateegia rakendamine on võrreldes kovalentse meetodiga lihtsam, kiirem ja 
odavam. Samuti piisab selle lähenemise puhul bioloogilise vastuse saamiseks 
väiksematest peptiidi ja nukleiinhappe kogustest, mis vähendab kõrvalmõjude 
tekkeriski. Samas on mittekovalentsel sidumisstrateegial ka puudusi. Kui kova-
lentse sidumise puhul saadakse täpselt defineeritavad RSP-nukleiinhappe konju-
gaadid, siis mittekovalentse sidumisstrateegia puhul tekivad nanokompleksid, 
mille koostise täpne kirjeldamine on oluliselt komplitseeritum, eriti heterogeen-
sete nanopartiklite moodustumise korral. RSP/nukleiinhappe komplekside oma-
duste (nt suurus, kuju, laeng) detailne kirjeldamine on aga vajalikud nende 
kasutuselevõtuks biomeditsiinis. Teine probleem, mis takistab mittekovalentse 
strateegia rakendamist, on vähene arusaam nanokomplekside rakku sisenemise 
mehhanismidest ja rakusisesest suunamisest. Rakku sisenemise mehhanismide 
ja rakusisese suunamise mõistmine on aga vajalikud vältimaks soovimatuid 
kõrvalmõjusid ning parendamaks peptiidide omadusi ja saavutamaks lastmole-
kulide võimalikult kõrget aktiivsust. Käesoleva doktoritöö eesmärgid olid 
RSP/nukleiinhappe komplekside omaduste iseloomustamine ning nende rakku-
desse sisenemise mehhanismide ja rakusisese suunamise selgitamine. Kõik 
kasutatud peptiidid on transportaan-10 (TP10) analoogid, mis on disainitud 
spetsiaalselt nukleiinhapete transpordiks imetajarakkudesse. 
 RSP/nukleiinhappe nanokomplekside kirjeldamiseks kasutasime dünaamilise 
valguse hajumise meetodit (DLS; i.k. dynamic light scattering) ning transmissioon 
elektronmikroskoopiat (TEM; i.k. transmission electron microscopy). TEMi abil 
leidsmine et TP10 järjestusest lähtuvalt disainitud transportpeptiidid PepFectid 
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(PF) ja NickFectid (NF) kondenseerivad nukleiinhappe molekulid suhteliselt 
homogeenseteks nanopartikliteks (NP). Uuritud RSPd moodustasid plasmiidse 
DNAga (pDNA) 50–60 nm diameetriga ning oligonukleotiididega oluliselt 
väiksemaid, 25–35 nm läbimõõduga partikleid, kui kompleksid moodustati 
vees. Tekkivate partiklite läbimõõdu erinevus tuleneb tõenäoliselt kondensee-
ritavate lastmolekulide suuruse erinevustest. pDNA (Mw= 3,1 MDa) on väga 
suur molekul võrreldes splaissingut muutva oligonukleotiidi (splicing switching 
oligonucleotide, SCO) (Mw= 5,9 kDa) või lühikese interferents RNAga (short 
interfering RNA, siRNA) (Mw=14,3 kDa) ning määrab ilmselt moodustuvate 
partiklite suuruse. Lisaks sellele leidsime, et RSP/nukleiinhappe nanopartiklite 
kuju sõltub mõnevõrra ka uuritava peptiidi järjestusest/omadustest. PF6, NF1 ja 
NF51 moodustasid kõigi kasutatud nukleiinhappe molekulidega sfäärilisi (PF6) 
või enamjaolt sfäärilisi (NF1, NF51) nanopartikleid. Seevastu PF14 moodustas 
kõigi uuritud nukleiinhapetega partikleid, mis olid kas sfäärilised, ellipsikuju-
lised või loperguse kujuga. Sageli olid PF14 sisaldavad partiklid omavahel 
assotsieerunud, moodustades ahelataolisi struktuure. Mitte ükski uuritud peptiid 
ei moodustanud stabiilseid nanopartikleid ilma nukleiinhappe juuresolekuta. 
DLSiga näitasime, et RSP/nukleiinhappe komplekside suurus ja pinnalaeng (ζ-
potentsiaal) sõltuvad ka neid ümbritseva lahuse omadustest. Nii seerumvabas 
kui seerumiga rakukultuuri söötmes ja NaCl füsioloogilises lahuses moo-
dustusid umbes kaks korda suuremad nanopartiklid kui vees. Lisaks sellele 
leidsime, et RSP/nukleiinhappe kompleksid omandavad söötmes või soola-
lahuses kergelt negatiivse pinnalaengu. 
 Positiivse laengu tõttu seonduvad RSP-d plasmamembraaniga interaktee-
rudes rakupinna negatiivse laenguga proteoglükaanidega. Hiljuti läbiviidud 
uuringud (Ezzat et al. 2012, van Asbeck et al. 2013) ning meie tulemused näi-
tasid aga, et PepFectide ja NickFectide kompleksid nukleiinhappe molekulidega 
on rakusöötmes negatiivse laenguga, mistõttu ei saa nende esmast seondumist 
rakkudega selgitada pelgalt elektrostaatiliste interaktsioonidega rakupinna nega-
tiivse laenguga molekulidega. Ezzat jt. näitasid, et PF14/SSO nanokompleksid 
seonduvad rakkude plasmamembraanil koristusretseptoritega SCARA3 (Class 
A Scavenger Receptor 3) ja SCARA5 (Class A Scavenger Receptor 5) (Ezzat et 
al. 2012). Ka meie töö tulemused kinnitasid, et RSP/nukleiinhappe komplekside 
rakkudesse sisenemine toimub läbi SCARA3 ja SCARA5 retseptoritega seon-
dumise. Rakkude eeltöötlus SCARA inhibiitorite polüinosiinhappe, dekstraan-
sulfaadi või fukoidaaniga blokeeris peaaegu täielikult PF14/pDNA, NF1/pDNA 
ja NF51/pDNA rakkudesse sisenemise, samas kui identse laengu ja sarnase 
struktuuriga, ent SCARAdega mitteseonduvad polütsütidüülhape, kondroitiin-
sulfaat ja galaktoos nanokomplekside bioaktiivsust ei mõjutanud. Kontrollimaks 
konkreetsete retseptorite osalust nukleiinhapete rakku transpordis NF-dega pärs-
sisime SCARA3 ja SCARA5 valkude sünteesi, kasutades vastavais siRNAsid, 
mis põhjustas enam kui 85% transfektsiooni efektiivsuse languse mõlema 
peptiidi puhul. 
 RSP/nukleiinhappe komplekside plasmamembraaniga seondumise ja raku-
sisese suunamise uurimiseks kasutasime TEM analüüsi. Nanopartiklite visua-
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liseerimiseks märgistasime oligonukleotiidid kovalentselt nanokullaga (Nano-
goldTM, 1,4 nm) ning biotinüleeritud plasmiidi mittekovalentselt streptavidiin-
nanokullaga või neutravidiin-kolloidkullaga. NF51/SSO nanopartiklid seon-
dusid HeLa pLuc 705 rakkude plasmamembraaniga partiklitena, mille läbimõõt 
oli 80–170 nm. Juba 30 minutit pärast nanokomplekside inkubatsiooni detektee-
risime rakkude sees märkimisväärselt rohkem nanopartikleid kui plasma-
membraanil. Rakkudes paiknesid nanopartiklid enamasti suurtes (400–500 nm) 
vesiikulites, endosoomides, aga juba ühe tunni möödudes tuvastasime üksikuid 
SSOsid tsütosoolis ilma ümbritseva vesiikuli membraanita. 4 h pärast inku-
batsiooni algust paiknesid mõned SSOd ka rakutuumas. PF14, NF1 ja NF51 
nanokompleksid pDNAga assotsieerusid rakupinnaga väikeste klastritena, mis 
sisaldasid 1–10 neutravidiin-kulla või streptavidiin-nanokulla märgist, viidates 
sellele, et ühes RSP/pDNA nanokompleksis oli 1–2 plasmiidse DNA molekuli. 
Rakupinnal paiknesid PF14/pDNA nanokompleksid sageli väikstes, 50–100 nm 
diameetriga membraani-invaginatsioonides, mis oma suuruse ja morfoloogia 
poolest sarnanesid kaveoolidele. NF51/pDNA nanokompleksid lokaliseerusid 
plasmamembraanil sageli membraanijätkete/filopoodide pinnal (i.k ruffles), mis 
on omased makropinotsütoosile. NF1/pDNA nanopartiklid paiknesid kas 
membraanijätketel või väikestes (d= 50–100 nm) membraani-invaginatsiooni-
des. 30 min–1 h pärast inkubatsiooni algust detekteerisime RSP/pDNA nano-
partikleid enamasti varajastes endosoomides või hilistes endosoomides ehk 
multivesikulaarsetes kehades. 4 h pärast inkubatsiooni algust lokaliseerus ena-
mus partikleid multivesikulaarsetes kehades, kuid üksikuid lastmolekule detek-
teerisime ka vabalt tsütosoolis. Tähelepanuväärselt ei lokaliseerunud nano-
kompleksid lüsosoomides, mis viitab, et PF-id ja NF-id takistavad hiliste endo-
soomide küpsemist lüsosoomideks. Me ei detekteerinud plasmiidset DNAd 
tuumas 4 tunni inkubatsiooni järel. 
 Lisaks TEM analüüsile kasutasime NF51/pDNA ja NF1/pDNA nanopartik-
lite rakkudesse sisenemise mehhanismi uurimiseks peamiste endotsütoosiradade 
farmakoloogilist inhibeerimist. Me eeltöötlesime rakke kloorpromasiini, nüsta-
tiini või tsütohalasiin D-ga, et takistada vastavalt klatriin-vahendatud endotsü-
toosi, kaveoliin-vahendatud endotsütoosi või makropinotsütoosi. Tsütohalasiin 
D vähendas NF51/pDNA transfektsiooni efektiivsust umbes 75%. Teised kasu-
tatud inhibiitorid NF51/pDNA transfektsiooni efektiivsust oluliselt ei mõju-
tanud, mis sarnaselt TEMi tulemustele viitavad, et NF51/pDNA nanokomplek-
sid sisenevad rakkudesse peamiselt makropinotsütoosi teel. NF1/pDNA trans-
fektsiooniefektiivsus vähenes rakkude eeltöötlemisel tsütohalasiin D-ga või 
kloorpromasiiniga mõlemal juhul 50% ning nüstatiiniga 20%, viidates, et 
NF1/pDNA nanopartiklid kasutavad rakkudesse sisenemiseks mitut endotsütoo-
sirada. 
 Meie tulemused korreleeruvad hästi varasemate uurimuste tulemustega antud 
valdkonnas. Ezzat jt. on näidanud, et PF14/SCO nanopartiklite sisenemine 
väheneb drastiliselt komplekside inkubeerimisel 4ºC juures, mis inhibeerib raku 
energiast sõltuvad rakku sisenemise mehhanismid. Lisaks sellele suurendas rak-
kude töötlemine endosomotroopilise molekuli klorokviiniga PF14/SSO nano-
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komplekside bioaktiivsust, viidates nende paiknemisele endosoomides (Ezzat et 
al. 2012). 
 Käesolevas doktoritöös näitasime, et TP10 analoogid PepFectid ja Nick-
Fectid moodustavad nukleiinhapetega ühtlase suurusega nanopartikleid, mis 
sõltuvalt nukleiinhappest on 30–60 nm diameetriga. Rakusöötmes ja füsioloogi-
lises lahuses on partiklid umbes 2 korda suuremad ning omandavad negatiivse 
laengu. Uuritud RSP/nukleiinhappe kompleksid seonduvad rakupinnal koristus-
retseptorite SCARA3 ja SCARA5ga. Rakkudesse sisenevad uuritud peptiidide/ 
nukleiinhappe kompleksid endotsütoosi teel ning kasutatavad endotsütoosirajad 
määrab eelkõige kompleksi moodustamiseks kasutatud peptiid. Enamus RSP/ 
nukleiinhappe komplekse paikneb 4 h pärast inkubatsiooni algust hilistes endo-
soomides, viidates, et endosoomidesse kinnijäämine on peamine bioaktiivsust 
limiteeriv faktor. 
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