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Abstract
Attitude determination is a very important aspect in the mission of spacecraft. There are

various methods of determining the attitude of a spacecraft, including, but not limited to,

magnetometers, beacons and gyroscopes.[1]

Star Trackers are systems consisting of one or multiple  image sensors connected to a

processing unit. The role of the processing unit is to detect stellar bodies and identify the

patterns made by the stellar bodies in the images captured and determine the attitude of

the spacecraft by comparing the patterns to those found in a pre-compiled database.

This thesis describes an algorithm developed to identify stellar objects, improving a pre-

viously developed and implemented algorithm developed at the KTH Royal Institute of

Technology.[2]

Using a running average, the new algorithm is able to adapt to a changing background

level when identifying stars. This is important as a set constant background level can be-

come obsolete over time as the brightness of the image background changes with the

movement of the spacecraft.

With the use of a weighted average system, the new algorithm is able to calculate the

Cartesian coordinates centers of stars within an image with sub-pixel accuracy. This im-

proves on the 1 pixel accuracy from the old algorithm. This increase in accuracy allows

for the calculation of centroids even if they occupy a small area on an image. Further-

more, an increase in the precision of the coordinates in stars may lead to an increase in

the accuracy when determining attitude.

CERCS: P160 Statistics, operation research, programming, actuarial mathematics; P520

Astronomy, space research, cosmic chemistry; T111 Imaging, image processing; T320

Space technology.

Keywords:  cubesat, FPGA, digital image processing, nanosatellite, running statistics,

star detection, Star Tracker, weighted average
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Resümee: Tähetuvastus algoritm ESTCube-2 
Tähevaatluskaamerale
Asendimääramine  on  satelliidi  töös  väga  oluline.  Selle  määramiseks  kasutatakse  er-

inevaid seadmeid, näiteks magnetomeetreid, majakaid ja güroskoope.[1]

Tähetuvastuskaamerad on süsteemid, mis koosnevad ühest või enamast pildisensorist,

mis on ühendatud arvutussüsteemiga. Arvutussüsteem tuvastab saadud piltidel tähtede

kujutisi ja koostab neist kindla algoritmi järgi kujundid. Võrreldes tuvastatud tähtede

mustrit sama algoritmi järgi tähekataloogi põhjal koostatud andmebaasiga, tuvastab süs-

teem satelliidi asendit.

Käesolev uurimustöö kirjeldab pildiandmete voogtöötlust  võimaldavat algoritmi,  mil-

lega tuvastada tähti pildi pealt, arendades edasi varem välja töötatud algoritmi.[2]

Algoritm arvutab jooksvalt pildi fooni, et eristada tähti taustast. Seda on vaja, kuna foon

võib sõltuvalt satelliidi liikumisest ajas muutuda ning jäik lävend vananeb aja jooksul

sensori kiirguskahjustuste kogunedes.

Algoritm arvutab tähtede koordinaate pildil piksli murdosa täpsusega, erinevalt varase-

mast algoritmist, mis tegi sama ühe piksli täpsusega. Satelliidi asendi määramise täpsus

kasvab ligikaudu lineaarselt tähtede asukoha määramise täpsusega.

CERCS: P160 Statistika, operatsioonanalüüs, programmeerimine, finants- ja kindlus-

tusmatemaatika;  P520  Astronoomia,  kosmoseuuringud,  kosmosekeemia;  T111

Pilditehnika; T320 Kosmosetehnoloogia

Võtmesõnad: digitaalne pilditöötlus, FPGA, jooksev statistika, kaalutud keskmine, ku-

upsatelliit, nanosatelliit, tähetuvastus, tähevaatluskaamera
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1. Introduction
Attitude determination is a key part of every spacecraft. It allows the spacecraft to cor-

rectly point its high gain antenna towards the Earth, and for spacecraft with controllable

solar arrays, it helps point them in the optimum attitude.

Traditionally, Attitude Determination Systems (ADSs) consist of an absolute reference

sensor and an inertial sensor. The absolute attitude sensor determines the direction of the

spacecraft a spacecraft is pointing at, relative to an origin, at regular intervals, while the

inertial sensor is used to measure changes between the previously mentioned intervals.

Among the sensors used in ADSs are magnetometers, radio frequency beacons, horizon

sensors, Sun sensors, gyroscopes, orbit models and star trackers.[1]

The focus of this thesis, the star tracker, is essentially an electronic camera connected to

a processing unit. The role of the processing unit is to locate and identify stars from the

electronic image and determine the orientation of the spacecraft.[3]

During the initial stages of development, the conventional star tracker was a fairly large

component, weighing tens of kilograms and using many watts of power.[4][5] However,

as more smaller and more affordable components are developed, and with the rising

popularity of smaller forms of satellites, such as the nanosatellite, there is a need for

smaller, more power efficient star tracker systems.

This thesis describes the development of one part of the star tracker system (STS) which

will be used in the ESTCube-2 satellite. The proposed STS for the satellite contains a

camera, a field-programmable gate array (FPGA), and, depending on the particular use

case, a microprocessor. In this particular setup, the role of the FPGA is to detect stars

from the image of the celestial sphere and send their coordinates to the microprocessor,

which will determine the attitude of the spacecraft.

It is important to mention that a similar system has been developed, at the KTH Royal

Institute of Technology, in the year 2014. The system in question uses an image sensor

similar to others used in the ESTCube and Tartu Observatory satellite projects, an Actel

Proasic  3 FPGA and a Smartfusion2 System-on-a-Chip (SOC). The system uses the

FPGA to control the image sensor and parse through the image data to obtain star coor-
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dinates, with an accuracy of one pixel. The SOC uses a star database in memory to cal-

culate the attitude of the satellite.[2]

This thesis uses the STS developed at the Royal Institute of Technology as a base and

improves on it, by obtaining the coordinates with an improved accuracy.
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2. Attitude Detection Methods and Systems
Attitude, as defined by the online Merriam-Webster Dictionary, is the position of an air-

craft or spacecraft determined by the relationship between its axes and a reference datum

(as the horizon or a particular star).[6] Attitude detection, therefore, has to do with using

sensor data in order to calculate and determine the attitude of a craft. In this thesis, atti-

tude and attitude detection shall be in the context of spacecraft.

Following are some of the methods and sensors used to determine the attitude of  a

spacecraft.

2.1. Magnetometers
Magnetometers  are  instruments  used  to  measure  the  strength  and  direction  of  low

strength magnetic fields (less than 1 mT). [7]

Given that the Earth can be considered to be a very large dipole magnet, it is possible to

determine the attitude of an object in space by measuring the magnetic field of the Earth

in relation to the given object. There are, however, factors that change the shape and

strength of the magnetic field, such as currents in the Earth's core and solar wind, to

name a few. These phenomena limit the accuracy of magnetometers. They are, however,

attractive solutions for low budget missions and missions which do not require a high

degree of accuracy. They can also be used as backup methods for more complex ADS

solutions.[8]

2.2. Sun Sensors and Beacons
Sun sensors determine the direction a spacecraft is orientated, in relation to the Sun. Ra-

dio beacons, just like the Sun, are used as a reference point, though they are consider-

ably less accurate.  With only one point of reference, only a single pointing direction can

be determined.[1] One can deduce that with increased points of reference, the attitude of

a satellite can be calculated with increased precision.
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2.3. Gyroscopes
These are devices that can measure angular velocity. The technology behind this is var-

ied, ranging from piezoelectric plates to laser rings[9]. Angular velocity, ω ,  is given

by the equation:

ω=
d θ

dt
, (1)

where d θ is the change in attitude over the period of time, dt. Knowing the angular

velocity, it is possible to calculate the attitude of a spacecraft, in relation to a point of

origin.

2.4. Star Trackers
The main focus of this thesis, the star tracker determines the attitude of a spacecraft

based on images taken of the celestial sphere. This is done by mapping the celestial bod-

ies detected from an image, constructing patterns according to a set algorithm and com-

paring these patterns to known stellar patterns in a database, finding the best match. The

components necessary for this are an image source, most commonly a dedicated camera

system, a processor, to detect stars in the image, and a star-pattern database, with which

the processor can identify the star patterns detected. This thesis focuses on the feasibility

of using an FPGA as the processor used to identify and determine the properties of stars

in an image.
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3. Field-Programmable Gate Arrays

3.1. Architecture
Commonly known by their acronym, FPGAs are integrated circuits designed to be con-

figured after manufacture. They are made up of logic blocks, also known as cells or

slices, placed in an infrastructure of interconnections. These can be programmed at three

levels: the function of the logic cells, the interconnections between cells and the inputs

and outputs. This makes them very powerful tools, as they are programmed on a hard-

ware level, creating specialized circuits within the semiconductor chip.[10] Following is

a brief overview of how programming is carried out on the three levels.

The  programmable  logic  data  for  the  FPGA is  contained  in  its  Configurable  Logic

Blocks (CLBs), commonly known as logic cells. Each manufacturer uses different archi-

tecture for the CLBs used in their FPGAs, with different CLB architectures offering dif-

ferent functionality. As such, CLBs can be classified into two: fine-grain and coarse-

grain logic blocks.

Fine-grain CLBs are small in size, with some made up of only one transistor pair. These

CLBs are used to implement relatively small or simple functions. In order to implement

more complex functions, more CLBs would need to be used, making the speed of the

process more dependent on inter-cell connectivity. In most cases, fine-grain architecture

is considered slower than coarse-grain architecture.[11]

Coarse-grain CLBs are larger in area, made up of multiple larger logic elements, for ex-

ample the Xilinx  4000 logic block, developed by the Xilinx Corporation contains flip-

flops, for clocked storage, multiplexers, to route the logic within the block, two 4-input

lookup tables (4-LUT), feeding their output into a 3-LUT. The 4-LUTs can be used to

produce any possible 4-input Boolean equation. The system of three LUTs can therefore

produce a wide variety of outputs for up to nine inputs.[12]

As individual logic cells, depending on their coarseness, offer simple functionality, it is

necessary to combine them, in order to develop more complex functions. The connec-

tions between logic cells, that enable such combinations, as well as connecting the logic
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cell to input/output pins controlled by transistors. The links can be programmed by vari-

ous methods, with the more conventional methods being SRAM, Antifuse and Floating

Gate programming. This is commonly referred to as routing.

SRAM programming utilizes static bits of RAM to control the routing. This allows for

the FPGA to be reprogrammed as needed, a very useful feature in development and de-

bugging. As RAM is volatile, this means that the FPGA must be reprogrammed with

each power cycle. In most cases, this is solved by loading the instruction set from an ex-

ternal memory source, such as EEPROM. SRAM, however, requires a large area, requir-

ing around 5 transistors per SRAM cell.[11]

Antifuse  programming  utilizes  devices  called  antifuses.  Conventional  fuses  conduct

electricity until a large enough current causes them to melt from the heat generated. In

the case of antifuses, there is a small, non-conductive link between two conductors, sep-

arated by an insulator. On applying a large voltage across the link, it melts. Conductor

material migrates across the link, creating a conductive path connecting the two conduc-

tors.[12] This process is not reversible. While the link areas can be very small, in order

to melt the fuse, high power transistors need to be placed into the circuitry, as well as

isolation features to protect low-voltage components.[11]

Floating gate programming uses technology found in erasable EPROM and EEPROM

devices. On programming, transistors are “disabled”, by injecting charge onto the float-

ing gate of the transistor (See Figure 1). This increases the threshold voltage of the tran-

sistor, effectively turning it off.

In the case of UV erasable EPROM transistors, this injected charge can be removed by

exposing the gate to UV light. As with SRAM technology, this can be reprogrammed.

An advantage over SRAM technology is the fact that floating gate FPGAs do not need

to be reprogrammed after each power cycle.[11]
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The technologies used play a key role in the selection of FPGA for an application. Some

applications, such as military and space technology, require that a device be non-volatile

and not susceptible to changes from radiation or power fluctuations.[12]

3.2. Programming
The fact that FPGAs are programmed at a hardware level allows for designers to create

independent and functionally different components and modules within the FPGA. As

such, the first process of programming an FPGA requires the developer to describe the

hardware to be implemented, both in terms of the elements and modules to be created

and used, as well as how they connect to each other. This is done with a hardware de-

scription language (HDL). HDLs allow for the description of multiple levels of hard-

ware, ranging from switch and gate level programming up to algorithm description.  It is

important to note that HDL code is essentially an accurate description of every aspect of

the design, meaning the design can be simulated without having to commit to a specific

FPGA.

The most common HDLs are VHDL (VHISC Hardware Description Language; VHSIC

– Very High Speed Integrated Circuit), Verilog and SystemVerilog. VHDL and Verilog

are open standards and maintained by groups of the Institute of Electrical and Electronic

Engineers as IEEE-STD-1076 and IEEE-STD-1364 respectively. While the languages

11
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are different, they all offer similar functionality.[12] 

For a hardware description to be implemented and programmed on an FPGA, the HDL

code needs to be synthesized. This creates a gate level equivalent of the high level HDL

code. After determining constraints, such as inputs, outputs and timing, this can be con-

verted to a bit stream, to be programmed onto the FPGA. Many synthesis software solu-

tions also optimize the HDL code for the particular vendor and FPGA chosen.[12]
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4. Detection of Stellar Sources
A star tracker can be considered to have two key parts: the camera and the processor.

The camera takes images of the celestial sphere, containing stars. The processor takes

the image files from the camera and determines the attitude. This process can be further

divided into two parts: star detection and stellar pattern recognition. The former takes

the aforementioned images and detects the stars, calculating their centroid coordinates in

pixels as well as their intensities. The latter takes these coordinates and intensities and

matches them to star patterns found in its database. The more accurate the coordinates

calculated, the easier it is to match the stars and the more accurate the estimation of atti-

tude. Another way of improving the accuracy of the system is to increase the amount of

stars detected in an image. This can be accomplished by increasing the field of view or

by creating a system that is capable of detecting fainter stars, given that there are more

faint stars in the celestial sphere than there are bright ones (approximately 2.5 times per

unit  magnitude,  see  the  Yale  Bright  Star  Catalog[13]).  It  is  important  to  stress  that

though both parts are equally important, this thesis will not handle the latter.

The camera module for the ESTCube-2 star tracker is still under development and the

choice of which image sensor to use has not been made. The likely candidates are the

1.2 mega-pixel “MT9M001C12STM”[14] and the 5 mega-pixel “MT9P031”[15], both

developed by ON Semiconductor. Bearing this in mind, some assumptions were made to

define this thesis:

1. The input image would be transferred to the processor in a stream, pixel-by-

pixel, row-by-row, starting from the top left.

2. The image sensor uses monochrome pixels, with pixel values ranging from 0 to

65535 (in other words, up to 16-bit ADC resolution).

During development of the algorithm, it was important to make sure that the image size

and pixel resolution could be changed with relative ease, as the algorithm could be used

with various sensors. Thus the number of pixels per row, the number of rows as well as

the maximum pixel value should be easily changeable, to cater for different sensors. In

addition, it is worth bearing in mind that the optics and sensors chosen will determine
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the angular resolution of the image, as well as the field of view.

During the initial stages of development, it was discovered that a star tracker similar in

architecture to the one being developed had already been created at the KTH Royal In-

stitute of Technology. It was therefore decided to use it as a base model and make im-

provements in specific areas, in order to increase the accuracy.

The first improvement was with the thresholding of pixels. Thresholding in this particu-

lar context has to do with the intensity level a pixel has to exceed in order to be consid-

ered as part of a star. The aim being to define which pixels were to be considered as part

of a star and which to be considered as part of the background. The star tracker devel-

oped by KTH used a constant threshold, that could be set and changed on command. All

pixels were compared with the threshold and pixels not exceeding the threshold were ig-

nored.[2] The algorithm analyzed in this thesis uses running statistics to detect pixels

that are brighter than the image background. This should improve on the detection of

stars, especially those with low intensities, as well as ensure that the algorithm can still

work despite a change in the background level. This can come into play when a very

bright celestial  body, such as the Sun or the Moon, is  close enough to considerably

change the brightness of the background.

The second improvement implemented had to do with improving precision of the coor-

dinates calculated, in order to improve the accuracy of the attitude determination. The

KTH tracker gives star coordinates with a precision of one pixel.[2] This should be im-

proved on, calculating the coordinates of stellar centroids with a sub-pixel accuracy.

As this algorithm is to be used to detect the attitude of spacecraft in real time, it should

be able to detect the stars and detect their center-points as fast as possible, preferably as

fast as the image sensor is capable of compiling new images. The speed of the algorithm

is important as it allows for faster reaction to motion.

14



5. Detection of stellar sources

5.1. Pixel Thresholding
When detecting stars, it is necessary to set up a threshold that differentiates the star from

the background. In an ideal situation, a star would be a point-spread function with a

cross section similar in shape to a Gaussian function. The background of such images

are not black voids, but rather include photons from unresolved astronomical objects,

bias level, read noise, thermally generated dark current and other sources. These un-

wanted photons must be accounted for and removed from the image, in order to accu-

rately calculate stellar positions from the image.[16]

Readout noise, also called read noise, is usually quoted as the number of extra electrons

introduced per pixel into the final readout of the device.  Read noise consists of two

parts. The first is the conversion from an analog signal to a digital number. The con-

verter  produces  a  statistical  distribution  of  possible  values  centered  around a  mean.

Thus, even if the same signal were to be quantized twice, the values obtained may be

different. The second part comes from the introduction of spurious electrons from the

sensor electronics. These two factors create additive noise in the output for each pixel.

[16]

Dark Current, as a source of noise, comes from the electronics within the image sensor.

Every material at a temperature above absolute zero experiences thermal noise. In an

image sensor, this means that if the temperature fluctuations are high enough, electrons

will be freed from the valence band of the semiconductor and be collected in pixels. For

this reason, many astronomers and designers seek better cooling technology.[16]

Imperfections in the electronics are not the only sources of noise in an image. Bombard-

ment from cosmic rays may fully saturate multiple pixels in an area. Over long periods

of time, such bombardments can affect the work of an image sensor for a considerably

long period of time or even cause permanent damage[16].

Figure 2 shows an example image. The white dots uniformly covering the image are as a

result of dark current and readout noise. The clumps of white pixels are stars and the
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white vertical streak is from an array of damaged pixels.

While the health of the image sensor is not within the scope of this thesis, it is important

to bear in mind while developing an algorithm meant to process such images, especially

as such bombardment can lead to detection of false objects.

One of the more easier ways of detecting the start of a bright star against a dark back-

ground is to detect a sharp rise in pixel intensities. In other words, simply comparing

each pixel with the previous to find a large change.

∂ pixi=|( pixi−pix i−1)| (2)

While the act of simply calculating the difference and comparing it to a set threshold is

fairly easy, it would not be able to adapt to a changing background and noise levels. If

the differences between consecutive pixels in the background increased, the hard-coded

threshold would not be useful. Also, if the background intensity level increased, it would

make the difference between the pixels in a star and the surrounding noisy background

decrease. As the profile of a star can be approximated by a Gaussian function[16], if the

slopes are too shallow, a threshold based on calculating the difference between consecu-
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tive pixels would filter such a star out. More importantly, this technique does nothing to

remove the noise present in the image.

A more accurate technique, which is also the technique used in this thesis, is to calculate

the arithmetic mean pixel value of the image and to use standard deviation of this calcu-

lated mean as the threshold, with variations of over five times the standard deviation

considered as part of the stars. The factor of five was chosen based on the assumption

that noise levels above the mean would follow normal distribution. Thus the chances of

a noisy pixel rising above the average by more than 5 sigma are approx. 0.023%. While

raising this threshold even further would further decrease the chances of a noisy pixel

exceeding the threshold, it also reduces the number of pixels detected for each star.

The standard deviation is described by the equation:

SN=√ 1
N
∑
i=1

N

(xi− x̄)2 , (3)

where SN is the standard deviation, N the number of pixels, xi the intensity value of the

pixel of index value I and x̄ is the arithmetic mean of all values of xi:

x̄=
∑
i=1

N

xi

N
(4)

To a processor or FPGA, the summation part of the arithmetic mean is a trivial function.

Division, on the other hand, is much more complicated, with most implementations re-

quiring the function to be carried out in a loop[17]. As a suitable division function was

not in the standard VHDL library, the author created a division function based on binary

division[18]. Source code, in C, can be found in Appendix 2.

Calculating standard deviation requires a second summation, a second division for cal-

culating the variance, the first being for calculating the mean, and a square root. Con-

ventional square root functions use floating point numbers, which are very expensive, in

terms of resources used, to implement on FPGAs.[19]

Thus, it was necessary to use functions that would allow for fast but accurate calculation

of the mean, variance and standard deviation. The average and variance were calculated
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using the following recurrent equation:

M k=M k−1+
xk−M k−1

k
, (5)

Sk=Sk−1+(x−M k−1)×(x−M k) , (6)

where Mk is the arithmetic mean calculated after the inclusion of element xk. xk is the in-

tensity of pixel k. Sk is the variance calculated after the inclusion of element xk.

These were chosen as they required few multiplication and division functions. They also

do not lead to a situation where Sk is negative, a problem that multiple other algorithms

face.[17]

For the recurrent equation  (6), the standard deviation is calculated using the equation:

[17]

σ=√ Sk

k−1
, (7)

where σ  is the standard deviation and where k is greater or equal to 2.

It was necessary to find an algorithm for calculating the square root of a number. Of the

most common square root functions there are few that can feasibly be implemented in

FPGA architecture. This is because many use multiple division functions and floating

point arithmetic to calculate the square root. For example, the Newton-Raphson method,

described in [20], is a function that iteratively converges onto the square root of an input

number. While it can be implemented to work with integers or fixed-point numbers, it

uses a division function in each iteration. The author chose to use a digit-by-digit algo-

rithm,  commonly  known  as  the  binary  method  or  the  square-root  by  abacus  algo-

rithm[21]. A comparison of these two functions was carried out in order to determine

how many more iterations were made in the Newton-Raphson method than the binary

method. The results of this comparison are  discussed later in this thesis. The source

code for the test is available in Appendix 2.
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5.2. Star Detection
The threshold process is meant to differentiate the background from the star pixels. This

is done by calculating the background level and then subtracting this level from every

pixel, forcing those that were below the threshold to zero. This leaves stars as the only

values above zero. From here on, we shall refer to adjacent groups of bright pixels (the

pixels that passed the threshold and are therefore not equal to zero) as blobs.

As the image from the sensor is streamed in, pixel-by-pixel, row-by-row, blobs are actu-

ally sequences of consecutive bright pixels, separated by longer sequences of dark pix-

els, as illustrated in Figure 3 below.

The top part of Figure 3 is a representation of how a star might look in an image, with

the blue lines dividing the pixels within the image. The bottom, a representation of how

the pixels would be streamed out of the image sensor, starting from the top right.

Bearing this in mind, the algorithm goes as follows.

1. If the pixel is bright (it exceeded the threshold), go to 3.

2. If there are any blob-less pixels, then create a new blob with all the blob-less pix-

els (there should now be 0 blob-less pixels). Go to 8.

3. If the pixel above this (oldest in the pixel buffer) is not bright, go to 5.

19
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4. Add this pixel, and any blob-less pixels to the blob containing the pixel above

this one. Go to 8.

5. If the pixel on the left (newest in the pixel buffer) is not bright, go to 7.

6. If the pixel on the left is part of a pixel, add this pixel to the blob with the pixel

on the left.

7. Add this pixel to the blob-less pixels.

8. Add this pixel to the buffer, in the same index as the x-coordinate of this pixel.

(This overwrites the oldest value in most cases).

The block diagram of the algorithm above is in Figure 8, in Appendix 1.

Blob data in memory contains the sum of the values for every pixel included, the sum of

weighted coordinates and a bit map of every pixel in the blob. This bit map is used when

checking whether a given pixel is in the blob. After the entire image has been parsed, the

coordinates for each blob are calculated with the equation:

COORD=
∑
i=1

N x

coordi∗intensityi

∑
i=1

N x

intensity i

, (8)

where coordi and intensityi are the x or y-coordinates and intensity of pixeli.

5.3. Algorithm Assessment
The algorithm was developed in the Python programming language,  with the source

code available, in Appendix 3. The language was chosen due to its ease of use, and func-

tional assessment was also carried out using Python. In order to test the algorithm, ran-

dom positions for 80 stars were generated using the “starlist” command from the  art-

data package from the IRAF astronomical data analysis package[22]. These positions

were constrained to be inside the 5 megapixel MT9P031 image sensor pixel array (i.e.

2592 x 1944 pixels). Using this star list, images were generated, adding noise based on

vendor-published noise parameters of the sensor as well  as Poisson noise,  using the

“mkobjects” command,  from  artdata. for  accuracy testing.  As the generated  images
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were in FITS format, using the the Python module “pyfits”[23] was needed. As the algo-

rithm would later need to be converted to VHDL or Verilog, the module “myhdl”[24]

was also used, to simulate the VHDL objects BIT_VECTOR and STD_LOGIC_VEC-

TOR whenever needed. Various noise levels were simulated by changing the exposure

time for the simulated images.

After the algorithm had calculated the centroids of the stars in each image, the calculated

coordinates were compared with the actual coordinates. The arithmetic mean of the dif-

ferences was plotted against the signal-to-noise ratio (SNR) of each image. The SNR

was calculated with the equation[16]:

S
N

=
NT

√ NT+npix×(NS+N R
2
)

, (9)

where NT is the total number of photons detected in a star, npix is the number of pixels

detected in a star, NS is the background level and NR the readout noise.
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6. Results and Discussion

6.1. Square-Root Algorithm Comparison

From Figure 4 above, it is evident that the number of iterations the Newton-Raphson

method goes through is considerably higher than those in the binary method. Looking at

the source code (Appendix 2), this is explained by the fact that each iteration in the algo-

rithm contains a division, which is another iterative function. The number of iterations

performed by the Newton-Raphson method is proportional to the input. The larger the

number, the more iterations. The total number of iterations is therefore a product of the

number of iterations carried out by the division function and the number of iterations

carried out by the Newton-Raphson algorithm.

6.2. Algorithm Assessment
Based on the first assessment test described in the previous section, the graph in the up-

per panel of Figure 5 was compiled.
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The graph shows that the average accuracy of the algorithm was 0.1 (indicated by the

green line) of a pixel, with more accuracy obtained from images with a smaller SNR.

However, the sudden increase in the standard deviation slightly before the SNR value of

50 is not logical, rather a sequential change similar to the beginning of the graph would

be more in order. This prompted the author to find where the increase in inaccuracy

came from. Figure 6 shows the phenomenon that caused this.
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Figure 5: Determined stellar position accuracy, depending on signal-to-noise ratio of
stellar sources. Error bars show one sigma standard deviation of the mean position dif-
ferences. The upper panel shows the case of a pair of overlapping stellar sources, while
the lower panel shows results with isolated stars.



When randomly generating the positions of the stars used in the images, two stars were

placed so close together, that they overlap, such that the algorithm interprets the two

stars as one. This happened on stars with magnitudes of 1m.8 and brighter. The differ-

ence in the coordinates calculated for the overlapped stars in this  case was approxi-

mately 2 pixels. On removal of the two merged pixels, the second graph in  Figure 5

(lower panel) was obtained.

The result is more logically acceptable, where with a rise in SNR leads to a better accu-

racy, up to a point. The given point in this case is close to 0.05 pixels, with a standard

deviation of 0.03 pixels.

In the case of bright stars, this problem can be considered to be very rare. In this particu-

lar scenario, the overlapping stars were at a distance of approximately 7 arcminutes. Ac-

cording to the Yale Bright Star Catalog[13] there are 24 stars brighter than 4.5 magni-

tude that have a neighbour closer than 10 arcminutes (see Figure 7). Of these, only 11

stars would be detected over the threshold, and of these, only two are of magnitude 2m.0

and brighter.
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Figure 6: Overlapping stars that caused problems for centroid detecting algorithm.
Separation between their stellar centers is 7 pixels.



Should this rarity still be a problem, however, there are a few possible solutions, how-

ever none of them are addressed in the algorithm, and the development of such solutions

is outside the scope of this thesis. As such, the development of this should be considered

as a follow-up in two parts. The first of which is determine the probability that any given

blob is made up of two stars. If a blob were made up of two stars, it would be plausible

to consider an oval as a model of the blob. Thus, blobs more oval in shape are more

likely to be made of two stars than round blobs. Depending on the distance between the

stars in the image as well as their brightness, it is also possible to determine the proba-

bility by comparing the size of the blob, in pixels, and or brightness with a set threshold.

If the probability is high enough, it would be necessary to develop an algorithm which

calculated the possible coordinates of the two stars, based on the brightness of the pixels

within the star.

The implementation of this algorithm successfully calculated the centroids of stars with

an accuracy of 0.1 in the tests carried out, with an average accuracy of 0.05 pixels. How-

ever, it is important to note what happened to stars fainter than 3m.8. In all cases, the

stars were not discernible from the background. As such, only singular pixels exceeded

the threshold, with many of them actually part of the background rather than part of a

star. Should this be an issue, the problem may be solved by either increasing the expo-

sure time on the image sensor, using optics with a larger aperture or selecting a sensor

25

Figure  7: Distribution of  stars and their closest  neighbours's angular separations.
Separations are given in arc minutes. Colours are used to code different stellar magni-
tudes, as given in the legend.



with a higher quantum efficiency. A combination of these could also be used. Alterna-

tively, multiple images could be sampled and summed. Over the course of multiple im-

ages of the same area in the celestial sphere, the random noise will cancel out leaving a

smoother background, making fainter stars easier to detect, by increasing the signal-to-

noise ratio of the image. In the case of a rotating spacecraft, this solution will not work.

6.3. Synthesis for FPGA choice
In order to determine the feasibility of using an FPGA for this application, the algorithm

was rewritten in VHDL and then synthesized. As synthesis requires an FPGA to use as a

model, the Xilinx XC7A35T[25] was used.

The two parts of the algorithm were synthesizes separately. Synthesis of the threshold

system (Appendix 4,  Appendix 5 and  Appendix 6) revealed that it would run with a

minimal (approximately 1% of the total amount of CLBs in the FPGA) amount of re-

sources. A simulation of this (source code in  Appendix 8) indicated that the function

would work correctly.

The blob detection system (Appendix 5 and Appendix 7) could not be synthesized, as it

required too many resources. The main issue was in the last process, “blob_data”, where

the system was to send the centroids and intensities of each blob to the next phase. The

system described was too large to synthesize using computer hardware available to the

author. Possible solutions to this problem include the usage of larger computer systems

or alternatively breaking up the hardware description to more manageable chunks.
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7. Conclusion
The purpose of this thesis was to improve the Star Tracker algorithm developed at KTH,

in the year 2014[2], and to determine which FPGA would be needed to do so.

The thresholding technique described in this thesis offers a more robust way of differen-

tiating stars from the background. This is done using a running average and standard de-

viation needs to be calculated as each pixel is streamed in from the sensor. This is neces-

sary because holding the entire image in memory while would require far too many re-

sources. For this purpose, the author developed a system to calculate a new average and

standard deviation for each pixel.

After thresholding, it is necessary to determine position and the brightness of each star

detected. However, as the image is streamed in, the algorithm needs to be able to com-

pile star data over multiple rows, bearing in mind that the rows of a star are divided by

streams of pixels from the background. The author used a pixel map for each blob to de-

termine which pixels should be included in specific blobs.

The algorithm developed succeeded in calculating the centroids of stellar objects with an

increased accuracy (up to one twentieth of a pixel) and is capable of adapting to chang-

ing brightness levels in images. The author was, however, unable to develop a working

hardware description for the algorithm. The hardware description developed required

too many resources to be implemented. The key problem in the description was brought

out and possible solutions suggested.
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8. Kokkuvõte
Selle lõputöö “Tähetede tuvastamise algoritm ESTCube-2 sateliidi  tähetuvastuskaam-

erale” eesmärk oli edasi arendada tähetuvastussüsteemi, mida oli arendatud KTH Kun-

inglikus  Tehnoloogiainstituudis  aastal  2014[2],  ja  hinnata,  milliste  parameetritega

FPGA-d oleks otstarbekas kasutada ESTCube-2 missiooni puhul.

Käesolevas töös kirjeldatud taevafooni tuvastamise meetod pakub robustsema tähtede

taustast eraldamise algoritmi. Selleks arvutatakse jooksvalt pikslite keskväärtust ja stan-

dardhälvet. Tähtede tuvastamist pikslite voost kasutatakse seetõttu, et FPGA-s puudub

piisav  mälumaht,  hoidmaks  tervet  kaamera  pilti  mälus  ning  ka  arvutusi  tuleb  teha

jooksvalt andmete sensorist välja lugemise käigus. Selle töö raames arendati algoritm,

mis arvutab FPGA-s jooksvalt pikslite keskväärtust ja standardhälvet.

Peale  tähtede  tuvastamist  tuleb  määrata  nende  positsioonid  ja  heledused.  Kuna  pilti

loetakse  kaamerast  välja  rea  kaupa,  on  ka  iga  tähe  pikslid  mitmetel  piksliridadel.

Käesolevas töös kasutatakse tähekujutise juurde kuuluvate pikslite kirjeldamiseks pik-

slikaarti.

Valminud algoritm suudab, võrreldes varasemas töös  [2] saavutatud ühepikslilise täp-

susega, määrata tähtede asukohti sensoril suurema täpsusega. Käesolevas töös saavutati

kõrge signaal-müra suhtega tähekujutiste  asukoha määramise täpsuseks  kuni  üks  ka-

hekpmnendik pikslit. Algoritm on suuteline töötama ka muutuva fooni nivoo ja müra

taseme korral. Algoritmid kirjeldati (vt. Lisa 4 kuni 7) ka FPGA-de puhul kasutatavas

VHDL-keeles. Probleemikohad VHDL koodis on antud töös välja toodud ning võima-

likud lahendused ka pakutud.
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Appendix 1: Algorithm Block Diagram
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Figure 8: Algorithm Block Diagram
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Appendix 2: Source Code - Newton-Raphson and
Binary Method Comparison
 1 #include "stdio.h"

 2 #include "stdlib.h"

 3 #include <stdint.h>

 4

 5 int j = 0;

 6

 7 int32_t divide(int32_t n, int32_t d)

 8 {

 9         uint16_t N, D;

10         if (n < 0)

11                 N = -n;

12         else

13                 N = n;

14

15         if (d < 0)

16                 D = -d;

17         else

18                 D = d;

19

20         if (!N || !D || N < D)

21                 return 0;

22

23         uint16_t Q = 0;

24         uint16_t R = 0;
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25         int8_t i;

26         for (i = 15; i >= 0; i--)

27         {

28                 uint16_t x = 1 << i;

29

30

31                 Q <<= 1;

32                 R <<= 1;

33

34                 if (N & x)

35                         R = R + 1;

36

37                 if (R >= D)

38                 {

39                         R = R - D;

40                         Q = Q + 1;

41                 }

42 j++;

43         }

44         if ((n < 0) != (d < 0)) //An XOR of the two is 

true

45                 return -Q;

46         return Q;

47 }

48

49

50 int newt_sqrt(int num) {

34



51 int k, x = 1;

52 while(1)

53 {

54 k = (x + divide(num, x)) >> 1;

55 if(x == k || x - k == 1 || k - x == 1)

56 {

57 return k;

58 }

59 x = k;

60 j ++;

61 }

62 }

63

64 long isqrt(long num) {

65     long res = 0;

66     long bit = 1 << 14; // The second-to-top bit is set:

1 << 30 for 32 bits

67     // "bit" starts at the highest power of four <= the 

argument.

68     while (bit > num)

69     {

70         bit >>= 2;

71         j++;

72     }

73

74     while (bit != 0) {

75         if (num >= res + bit) {
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76             num -= res + bit;

77             res = (res >> 1) + bit;

78         }

79         else

80             res >>= 1;

81         bit >>= 2;

82         j++;

83     }

84     return res;

85 }

86

87

88 int main(int argc, char* argv[])

89 {

90 printf("%s, ", argv[1]);

91 printf("%d, ", newt_sqrt(atoi(argv[1])));

92 printf("%d, ", j);

93 j = 0;

94 printf("%lu, ", isqrt(atoi(argv[1])));

95 printf("%d\n", j);

96

97 }
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Appendix 3: Source Code - Star Tracker in 
Python
  1  import pyfits

  2  from sys import argv

  3  from math import sqrt

  4  from myhdl import intbv

  5  

  6  class Blob:

  7      def __init__(self, X, Y):

  8          self.size = 0

  9          self.sum = 0

 10          self.x_sum = 0

 11          self.y_sum = 0

 12          self.parts = [intbv(0, min = 0, max=2**Y) for 

j in range(X)]

 13  

 14      def add_to_blob(self, x, y, pix):

 15          if pix:

 16              self.size += 1

 17              self.sum += pix

 18              self.x_sum += x * pix

 19              self.y_sum += y * pix

 20              self.parts[x][y] = True

 21  

 22      def find_in_blob(self, x, y):

 23          try:

37



 24              return self.parts[x][y]

 25          except:

 26              return False

 27      def add_sigma(self, sigma):

 28          self.sigma=sigma

 29  

 30      def get(self):

 31          #if self.size > 4:

 32          return (round(float(self.x_sum)/self.sum, 3), 

round(float(self.y_sum)/self.sum, 3), self.sum, self.size)

 33  

 34  M = 0

 35  oM = 0

 36  S = 0

 37  k = 0

 38  sigma = 0

 39  

 40  

 41  def thresh(x, cutoff):

 42      global M

 43      global oM

 44      global S

 45      global k

 46      global sigma

 47  

 48      k += 1

 49      oM = M
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 50      M = M - int((M - x) / k)

 51      if M < 0:

 52          M = 0

 53      S += (x - oM) * (x - M)

 54  

 55      if S > 0 and k > 1:

 56          sigma = int(sqrt(S/(k - 1)))

 57      else:

 58          sigma = 0

 59  

 60      if abs(x - M) < cutoff * sigma:

 61          x = 0

 62      else:

 63          x = x - M

 64      return x

 65  

 66  print(argv[1])

 67  

 68  img = 0

 69  

 70  try:

 71      img = pyfits.getdata(argv[1], ignore_missing_end =

True)

 72  

 73  except:

 74      exit(-1)

 75  
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 76  

 77  pixel_buffer = [None for i in range(len(img[0]))]

 78  

 79  blobs = []

 80  

 81  GLOBAL_X = 0

 82  GLOBAL_Y = 0

 83  

 84  Last_active_blob = None

 85  size = 0

 86  

 87  for rida in img:

 88      for pixel in rida:

 89          pix = int(thresh(pixel, 5))

 90          if pix:

 91              if not Last_active_blob:

 92                  for blob in blobs:

 93                      if blob.find_in_blob(GLOBAL_X, 

GLOBAL_Y-1):

 94                          Last_active_blob = blob

 95                          break

 96              if Last_active_blob:

 97                  for i in range(size):

 98                      

Last_active_blob.add_to_blob(GLOBAL_X - (i + 1), GLOBAL_Y, 

pixel_buffer[GLOBAL_X - (i + 1)])

 99                  size = 0

100                  Last_active_blob.add_to_blob(GLOBAL_X,
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GLOBAL_Y, pix)

101  

102              else: # We didn't find a blob this could 

have been a part of.

103                  size += 1

104          else: # The pixel in question DID NOT pass 

thresholding

105              if size: # This pixel is preceeded by a 

light pixel. We should see if we can add it to a blob.

106                  if not Last_active_blob:

107                      Last_active_blob = 

Blob(len(img[0]), len(img))

108                      blobs.append(Last_active_blob)

109                  for i in range(size):

110                      

Last_active_blob.add_to_blob(GLOBAL_X - (i + 1), GLOBAL_Y, 

pixel_buffer[GLOBAL_X - (i + 1)])

111                  Last_active_blob.add_sigma(sigma)

112                  size = 0

113              else:

114                  Last_active_blob = None

115  

116          pixel_buffer[GLOBAL_X] = pix

117          GLOBAL_X += 1

118      GLOBAL_Y += 1

119      GLOBAL_X = 0

120  

121  out_file = open(argv[1]+ ".csv", "w")
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122  out_file.write(argv[1]+ "\n")

123  for i in blobs:

124      if i.get():

125          txt = "{0[0]:.3f}, {0[1]:.3f}, {0[2]}, 

{0[3]}\n".format(i.get())

126          out_file.write(txt)

127  
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Appendix 4: Source Code – arith.vhd
 1 library IEEE;

 2 use IEEE.STD_LOGIC_1164.all;

 3 use IEEE.NUMERIC_STD.all;

 4

 5 package arith is

 6 function bin_sqrt ( num : in UNSIGNED) return UNSIGNED;

 7 function divide ( NUMERATOR,DENOMINATOR : in UNSIGNED) return UN-

SIGNED;

 8 end arith;

 9

10 package body arith is

11 function bin_sqrt (num : in UNSIGNED ) return UNSIGNED is

12 variable int_num : UNSIGNED (num'Length-1 downto 0);

13 variable res : UNSIGNED (num'Length-1 downto 0) := (others => 

'0');

14 variable bitt : UNSIGNED (num'Length-1 downto 0) := (0 => '1', 

others => '0');

15 begin

16 bitt := shift_left(bitt, bitt'Length-2);

17 int_num := num;

18 if (num < 0) then

19 int_num := not int_num;

20 int_num := int_num - 1;

21 end if;

22 L1: for i in 0 to 31 loop

23 exit L1 when bitt <= num;

24 bitt := shift_right(bitt, 2);

25 end loop L1;

26

27 L2: for i in 0 to num'Length-1 loop

28 exit L2 when bitt = 0;

29 if (int_num >= (res + bitt)) then
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30 int_num := int_num - (res + bitt);

31 res := shift_right(res, 1);

32 res := res + bitt;

33 else

34 res := shift_right(res, 1);

35 end if;

36

37 bitt := shift_right(bitt, 2);

38 end loop L2;

39 return res;

40 end bin_sqrt;

41

42 function divide ( NUMERATOR,DENOMINATOR : in UNSIGNED) return UNSIGNED

is

43 variable N : UNSIGNED (NUMERATOR'Length-1 downto 0) := (others => 

'0');

44 variable D : UNSIGNED (DENOMINATOR'Length-1 downto 0) := (others 

=> '0');

45 variable Q : UNSIGNED (NUMERATOR'Length-1 downto 0) := (others => 

'0');

46 variable R : UNSIGNED (DENOMINATOR'Length-1 downto 0) := (others 

=> '0');

47 begin

48 N := NUMERATOR;

49 D := DENOMINATOR;

50 if (N = 0 or D = 0 or N < D) then

51 return Q;

52 end if;

53 L: for i in 15 downto 0 loop

54 Q := shift_left(Q, 1);

55 R := shift_left(R, 1);

56 R(0) := N(i);

57 if (R >= D) then

58 R := R - D;

59 Q := Q + 1;
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60 end if;

61 end loop L;

62 if (NUMERATOR < 0 xor DENOMINATOR < 0) then

63 Q := not Q;

64 Q := Q + 1;

65 end if;

66 return Q;

67 end divide;

68 end arith;
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Appendix 5: Source Code – sensor.vhd – VHD 
Package
 1  library IEEE;

 2  use IEEE.STD_LOGIC_1164.all;

 3  use IEEE.NUMERIC_STD.all;

 4  

 5  package Sensor is

 6      constant LENGTH_X : INTEGER := 2592;

 7      constant LENGTH_Y : INTEGER := 1944;

 8      constant N_X : INTEGER := 11; -- This is the number of bits in the num-

ber of pixels in the sensor: log(LENGTH_X)/(log(2)

 9      constant N_Y : INTEGER := 10; -- This is the number of bits in the num-

ber of pixels in the sensor: log(LENGTH_Y)/(log(2)

10      constant N : INTEGER := 22; -- This is the number of bits in the number

of pixels in the sensor: log(LENGTH_X*LENGTH_Y)(log(2)

11      constant MAX_BLOBS : INTEGER := 10;

12      type bit_map is array (0 to 9) of STD_LOGIC_VECTOR (19 downto 0);

13      type blob is record

14          first_x : UNSIGNED (n_x downto 0);

15          first_y : UNSIGNED (n_y downto 0);

16          b_map : bit_map;

17          x_sum : UNSIGNED (31 downto 0);

18          y_sum : UNSIGNED (31 downto 0);

19          sum : UNSIGNED (31 downto 0);

20          n : INTEGER range 0 to 127;

21      end record;

22      type blob_array is array (0 to MAX_BLOBS-1) of blob;

23      type pixel_array is array (0 to LENGTH_X-1) of UNSIGNED (15 downto 0);

24  end Sensor;

25  package body Sensor is

26  end Sensor;
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Appendix 6: Source Code – thresholding.vhd – 
VHD Source
 1 library IEEE;

 2 use IEEE.STD_LOGIC_1164.ALL;

 3 use IEEE.NUMERIC_STD.ALL;

 4 use WORK.ARITH.ALL;

 5 use WORK.SENSOR.ALL;

 6

 7 entity thresholding is

 8     Port ( pixel_in : in UNSIGNED (15 downto 0);

 9            pixel_out : out UNSIGNED (15 downto 0);

10            new_pixel : STD_LOGIC;

11            clk : in STD_LOGIC);

12 end thresholding;

13

14 architecture Behavioral of thresholding is

15     signal M : UNSIGNED (15 downto 0) := (others => '0'); -- the current 

arithmetic mean

16     signal oM : UNSIGNED (15 downto 0) := (others => '0'); -- the old 

arithmetic mean

17     signal k : UNSIGNED (N downto 0) := (others => '0'); -- the total num-

ber of pixels obtained

18     signal sigma : UNSIGNED (16 downto 0) := (others => '0');

19 begin

20     averaging : process(pixel_in)

21     -- this process calculates a new average with every change in 

"pixel_in"

22         variable dif : UNSIGNED (15 downto 0) := (others => '0');        

23     begin

24         k <= k + 1;

25         if M > pixel_in then

26             dif := M - pixel_in;

27 dif := divide(dif, k);
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28             M <= M + dif;

29         else

30             dif := pixel_in - M;

31 dif := divide(dif, k);

32             M <= M - dif;

33         end if;

34     end process;

35     

36     std_dev : process (M)

37     --this process calculates the standard deviation with every new aver-

age

38         variable dif : UNSIGNED (15 downto 0) := (others => '0');

39         variable odif : UNSIGNED (15 downto 0) := (others => '0');

40         variable active_pixel : UNSIGNED (15 downto 0) := (others => '0');

41         variable S : UNSIGNED (32 downto 0) := (others => '0');

42 variable n_S : UNSIGNED (32 downto 0) := (others => '0');

43     begin

44         active_pixel := pixel_in;

45         if M > active_pixel then

46             dif := M - active_pixel;

47         else

48             dif := active_pixel - M;

49         end if;

50         if oM > active_pixel then

51             odif := oM - active_pixel;

52         else

53             odif := active_pixel - oM;

54         end if;

55         S := S + divide (S + dif*odif, k-1);

56         sigma <= bin_sqrt(S)(16 downto 0);                

57     end process;

58     

59     threshy : process(sigma)
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60     --this process calculates the new value of the pixel, based on the 

threshold.

61         variable f_sigma : UNSIGNED (16 downto 0) := (others => '0');

62     begin

63         f_sigma := shift_left(sigma, 2) + sigma; -- multiply sigma by 5: 

shift left twice, then add sigma.

64         if pixel_in < M + f_sigma then

65             pixel_out <= (others => '0');

66         else

67             pixel_out <= pixel_in - (M + f_sigma(15 downto 0));

68         end if;

69     end process;

70 end Behavioral;
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Appendix 7: Source Code – blobber.vhd – VHD 
Source
  1 library IEEE;

  2 use IEEE.STD_LOGIC_1164.ALL;

  3 use IEEE.NUMERIC_STD.ALL;

  4 use WORK.SENSOR.ALL;

  5

  6 entity blobber is

  7     Port ( pixel_in : in UNSIGNED (15 downto 0);

  8            clk : in STD_LOGIC;

  9            blob_x : out UNSIGNED (31 downto 0);

 10            blob_y : out UNSIGNED (31 downto 0);

 11    blob_int : out UNSIGNED (31 downto 0));

 12 end blobber;

 13

 14 architecture Behavioral of blobber is

 15     component thresholding is

 16         Port ( pixel_in : in UNSIGNED (15 downto 0);

 17                pixel_out : out UNSIGNED (15 downto 0);

 18                new_pixel : STD_LOGIC;

 19                clk : in STD_LOGIC);

 20     end component;

 21     signal pixel_threshed : UNSIGNED (15 downto 0);

 22     signal new_pixel : STD_LOGIC;

 23     signal x_coord : integer range 0 to LENGTH_X - 1 := 0;

 24     signal y_coord : integer range 0 to LENGTH_Y - 1 := 0;

 25     signal b_array_top : integer range 0 to MAX_BLOBS - 1 := 0;

 26     signal active_blob : integer range -1 to MAX_BLOBS - 1 := -1;

 27     signal b_array : blob_array;

 28     signal p_array : pixel_array;

 29     signal blob_search_complete : STD_LOGIC := '0';

 30     signal the_blobless : INTEGER range 0 to 20 := 0; -- We assume that 
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we'll not have stars larger than 20 pixels.

 31 begin

 32     thresh : thresholding PORT MAP(

 33         pixel_in => pixel_in,

 34         pixel_out => pixel_threshed,

 35         new_pixel => new_pixel,

 36         clk => clk);

 37     coords : process (new_pixel)

 38  -- This process keeps track of the current pixel coordinates.

 39     begin

 40         if x_coord = LENGTH_X - 1 then

 41             x_coord <= 0;

 42             if y_coord = LENGTH_Y - 1 then

 43                 y_coord <= 0;

 44             else

 45                 y_coord <= y_coord + 1;

 46             end if;

 47         else

 48                 x_coord <= x_coord + 1;

 49         end if;

 50   p_array(x_coord) <= pixel_threshed;

 51     end process;

 52     

 53     search_for_blobs : process(x_coord)

 54  -- This process searches the left and upper pixels to see if we have 

any blobs.

 55 variable x_crd : integer range 0 to LENGTH_X - 1 := 0;

 56 variable y_crd : integer range 0 to LENGTH_Y - 1 := 0;

 57     begin

 58 blob_search_complete <= '0';

 59 if b_array_top > 0 then

 60 BLOB_SEARCH : for i in 0 to MAX_BLOBS - 1 loop

 61 if i >= b_array_top - 1 then
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 62 exit BLOB_SEARCH;

 63 end if;

 64 -- First, we need to map our global x and y coordinates 

to the local bitmap of the blob.

 65 if x_coord > b_array(i).first_x then

 66 x_crd := 10 + x_coord - 

to_integer(b_array(i).first_x);

 67 else

 68 x_crd := 10 - (to_integer(b_array(i).first_x) - x_co-

ord);

 69 end if;

 70 y_crd := y_coord - to_integer(b_array(i).first_y);

 71

 72 if b_array(i).b_map(y_crd)(x_crd - 1) = '1' or 

b_array(i).b_map(y_crd - 1)(x_crd) = '1' then

 73 active_blob <= i;

 74 blob_search_complete <= '1';

 75 exit BLOB_SEARCH;

 76 end if;

 77 end loop BLOB_SEARCH;

 78 end if;

 79

 80 if blob_search_complete = '0' then

 81 blob_search_complete <= '1';

 82 active_blob <= -1;

 83 end if;

 84 end process;

 85

 86 add_to_blobs : process (blob_search_complete)

 87 variable x_crd : integer range 0 to LENGTH_X - 1 := 0;

 88 variable y_crd : integer range 0 to LENGTH_Y - 1 := 0;

 89 begin

 90 if rising_edge(blob_search_complete) then

 91 if not pixel_threshed = X"0000" then
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 92 the_blobless <= the_blobless + 1;

 93 if active_blob >= 0 then

 94 -- This pixel passed the threshold and we have a blob

to add it to.

 95 -- First, we need to map our global x and y coordi-

nates to the local bitmap of the blob.

 96 if x_coord > b_array(active_blob).first_x then

 97 x_crd := 10 + x_coord - to_integer(b_array(ac-

tive_blob).first_x);

 98 else

 99 x_crd := 10 - 

(to_integer(b_array(active_blob).first_x) - x_coord);

100 end if;

101 y_crd := y_coord - 

to_integer(b_array(active_blob).first_y);

102

103 ADD_BLOBLESS : for i in 0 to 20 loop

104 if i >= the_blobless - 1 then

105 exit ADD_BLOBLESS;

106 end if;

107 b_array(active_blob).b_map(y_crd)(x_crd - i) <= 

'1';

108 b_array(active_blob).x_sum <= 

b_array(active_blob).x_sum + (p_array(x_crd - i) * (x_crd - i));

109 b_array(active_blob).y_sum <= 

b_array(active_blob).y_sum + (p_array(x_crd - i) * y_crd);

110 b_array(active_blob).sum <= 

b_array(active_blob).sum + p_array(x_crd - i);

111 b_array(active_blob).n <= b_array(active_blob).n

+ 1;

112 end loop ADD_BLOBLESS;

113 the_blobless <= 0;

114 end if;

115 else

116 -- The current pixel did not pass the threshold.

117 if the_blobless > 0 then
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118 -- We have blobless, so we should create a new blob.

119 CREATE_BLOB : for i in 0 to 20 loop

120 if i >= the_blobless - 1 then

121 exit CREATE_BLOB;

122 end if;

123 b_array(b_array_top).b_map(y_crd)(x_crd - i) <= 

'1';

124 b_array(b_array_top).x_sum <= 

b_array(b_array_top).x_sum + (p_array(x_crd - i) * (x_crd - i));

125 b_array(b_array_top).y_sum <= 

b_array(b_array_top).y_sum + (p_array(x_crd - i) * y_crd);

126 b_array(b_array_top).sum <= 

b_array(b_array_top).sum + p_array(x_crd - i);

127 b_array(b_array_top).n <= b_array(b_array_top).n

+ 1;

128 end loop CREATE_BLOB;

129 the_blobless <= 0;

130 b_array_top <= b_array_top + 1;

131 end if;

132 end if;

133 end if;

134 end process;

135

136 blob_data : process (y_coord)

137 -- This process will send blob data as soon as a blob is compiled.

138 variable sent_blob : integer range 0 to MAX_BLOBS - 1 := 0;

139 variable sum_x, sum_y : UNSIGNED (31 downto 0);

140 begin

141 if b_array_top > 0 then

142 parse_blobs : while sent_blob < b_array_top loop

143 if y_coord - to_integer(b_array(sent_blob).first_y) >= 10

or y_coord = LENGTH_Y - 1 then

144 sum_x := b_array(sent_blob).x_sum * 10;

145 sum_y := b_array(sent_blob).y_sum * 10;

146 blob_x <= sum_x / b_array(sent_blob).sum;

54



147 blob_y <= sum_y / b_array(sent_blob).sum;

148 blob_int <= b_array(sent_blob).sum / 

b_array(sent_blob).n;

149 sent_blob := sent_blob + 1;

150 else

151 exit parse_blobs;

152 end if;

153 end loop parse_blobs;

154 end if;

155 end process;

156

157 end Behavioral;
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Appendix 8: Source Code – thresh_sim.vhd – 
VHDL Simulation
 1 LIBRARY ieee;

 2 USE ieee.std_logic_1164.ALL;

 3 USE ieee.numeric_std.ALL;

 4  

 5 ENTITY Thresh_sim IS

 6 END Thresh_sim;

 7  

 8 ARCHITECTURE behavior OF Thresh_sim IS 

 9     COMPONENT thresholding

10     PORT(

11          pixel_in : IN  UNSIGNED (15 downto 0);

12          pixel_out : OUT  UNSIGNED(15 downto 0);

13          new_pixel : IN  std_logic;

14          clk : IN  std_logic

15         );

16     END COMPONENT;

17    signal pixel_in : UNSIGNED(15 downto 0) := (others =>

'0');

18    signal new_pixel : std_logic := '0';

19    signal clk : std_logic := '0';

20    signal pixel_out : UNSIGNED(15 downto 0);

21    constant clk_period : time := 10 ns;

22 BEGIN

23    uut: thresholding PORT MAP (

56



24           pixel_in => pixel_in,

25           pixel_out => pixel_out,

26           new_pixel => new_pixel,

27           clk => clk

28    clk_process :process

29    begin

30 clk <= '0';

31 wait for clk_period/2;

32 clk <= '1';

33 wait for clk_period/2;

34    end process;

35    stim_proc: process

36    begin

37       wait for 100 ns;

38       wait for clk_period*10;

39 pixel_in <= X"2010";

40 wait for clk_period;

41 pixel_in <= X"1010";

42 wait for clk_period;

43 pixel_in <= X"8010";

44 wait for clk_period;

45 pixel_in <= X"6010";

46 wait for clk_period;

47 pixel_in <= X"F010";

48 wait for clk_period;

49 pixel_in <= X"3010";

50 wait for clk_period;
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51 pixel_in <= X"2010";

52 wait for clk_period;

53 pixel_in <= X"A010";

54 wait for clk_period;

55 pixel_in <= X"B010";

56 wait for clk_period;

57       wait;

58    end process;

59 END;
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