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Physical constants and conventions

The following physical constants are often referred to in this work:

NA = 6.02214129(27) · 1023 mol−1 Avogadro constant

µB = 9.27400968(20) · 10−24 J T−1 Bohr magneton

kB = 1.3806488(13) · 10−23 J K−1 Boltzmann constant

In accordance with the customs of this field of science, some physical quantities

are not reported in SI units. Magnetisation, normally an extensive quantity, is

measured in µB per magnetic site, thus effectively giving the site’s magnetic mo-

ment as a fraction of that of a free electron. Magnetic susceptibility is reported

in emu/mol, i.e. in CGS electromagnetic units normalised per mole of particles

instead of unit volume or mass of the compound.

Physical quantities with energy dimension are mostly reported in units of Kelvin.

The conversion from the value of a quantity in Kelvin to that in Joules can be made

by multiplying with kB. The use of this convention makes clear the temperature

scale where energy of thermal fluctuations becomes comparable with the energy

of the described phenomenon.
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1. Introduction

Low-dimensional magnetism, especially in Cu2+ compounds, has proved itself to

be a surprisingly diverse field of study. Mainly concerned with investigating the

magnetic properties of compounds and relevant models with chains or layers of

spins, it has contributed to the emergence of many interesting physical phenomena.

Arguably the most intriguing of those is the high-Tc superconductivity in layered

cuprates with CuO2 planes [1]. As claimed by Anderson [2], it is closely related to

the existence of new phases of the 2D spin-1
2

Heisenberg model, favoured by low

spin, low dimensionality, and magnetic frustration.

An example more specific to low-dimensional magnetism is the spin-Peierls tran-

sition, where a uniform antiferromagnetic chain undergoes dimerisation into a

system with a non-magnetic spin singlet ground state [3]. Although first ob-

served in an organic compound [4], it was soon also discovered in a Cu2+ mate-

rial CuGeO3 [5]. Bose-Einstein condensation, in contrast, is a fundamental phe-

nomenon well known in other branches of physics, but it also appears naturally

in magnetic systems. Magnons, elementary excitations in antiferromagnets, have

been found to condense in a number of magnetic materials with even richer physics

than in canonical Bose-Einstein condensates [6].

The phenomena described above are extreme examples of what kind of physics

can be found in magnetic materials when they are investigated in detail. In other

cases, one might not need a better description of a compound than whether it is

para- or diamagnetic. However, it is possible that when looked into, a seemingly

ordinary material displays some new feature or allows us to gain insight into some

previously known model. The latter is often the main motivation behind studying
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a new compound from the perspective of microscopic magnetic modelling. And

if the system is found to have interesting features, further experimental work can

be launched to investigate the details. Not less importantly, microscopic magnetic

modelling studies also enhance our understanding of the nature of microscopic

magnetic interactions in the diverse crystal structures and chemistries of inorganic

materials.

The aim of this thesis is to establish the microscopic magnetic model of Cu(OH)Cl

by means of ab-initio calculations and refine the model parameters by fitting exper-

imental data with simulated curves. It is proposed that the magnetic properties

of the material are best explained by a quasi-two-dimensional spin-1
2

antiferro-

magnetic Shastry-Sutherland model. Because of its strongly frustrated nature,

the Shastry-Sutherland model [7] has several zero-temperature ground states in

different parameter regions. There has been much discussion about the character-

istics of these quantum phases and phase transitions [8], but so far experimental

evidence has been scarce. This makes the discovery of a new Shastry-Sutherland

compound especially significant – Cu(OH)Cl provides an opportunity for further

studies into the model and its properties.

This thesis is structured in the following way. Chapter 2 gives an overview of mag-

netism on a microscopic level, explaining the mechanisms of interaction between

localised magnetic moments in crystals and how to model them. Description and

initial analysis of the structure and experimental characteristics of Cu(OH)Cl fol-

lows, together with details about the Shastry-Sutherland model. Then, methods

that were used to carry out this work are explained, after which we give an account

of our results. Finally, the results are discussed and conclusions are drawn.
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2. Overview of magnetism on a micro-

scopic level

2.1 A microscopic view on magnetic interactions

From everyday experience it might seem that ferromagnetism is the only mag-

netic phenomenon occurring in materials. This is of course not the case, but it is

true that other magnetic phenomena in materials have weaker effects on the sur-

roundings. All magnetic phenomena share one principal property, though: they

have their origin on the microscopic scale, and one has to investigate them on the

microscopic level to gain any insights.

The first and most important requirement for observing magnetic phenomena in

a system is that it needs to contain unpaired electrons. Still, the mechanism

how magnetism arises depends very much on whether these unpaired electrons

are delocalised over the whole system (like in metals) or localised on specific sites

(mostly in insulators). As this work is focused on Cu(OH)Cl, an insulator with

localised unpaired electrons, only the mechanisms relevant for the latter case are

considered here.

Magnetism is inherently a quantum effect, arising from strong correlations between

electrons as prescribed by the many-body wavefunction. In macroscopic systems, a

full quantum mechanical treatment based on the many-body Schrödinger equation

is impossible, meaning that approximate models need to be used to make progress.

A useful simplification is considering only pairwise correlations, thus neglecting the
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possibility of three-body (etc.) interactions. The Heisenberg model [9] uses exactly

this approach, describing a collection of spins with the Hamiltonian

Ĥ =
∑
i

∑
j<i

JijŜi · Ŝj (2.1)

Here, Jij denotes the exchange coupling between the pair of spins on sites i and j,

the full Hamiltonian forms as a sum over all pairs of interactions. The maximum

possible expectation value of Ŝi · Ŝj is 1
4

(for a spin triplet) and minimum −3
4

(for

a spin singlet) – here we absorb ~2 into Jij to make the spin operators dimension-

less. A positive Jij means that the spin singlet configuration lies lower in energy

and the interaction is antiferromagnetic, forcing the spins to oppose one another.

Conversely, in case of a negative Jij the spin triplet configuration has lower en-

ergy and the interaction is ferromagnetic, favouring parallel spins. We also see

that Jij is the energy difference between the ferromagnetic and antiferromagnetic

configurations.

The Heisenberg model provides a very convenient description of interacting mag-

netic sites on a lattice, because it is independent of the particular mechanism that

gives rise to the exchange couplings and simply assigns spins to localised sites.

There is a number of pathways how exchange couplings can emerge, and of course

they require describing the system on the level of electrons and orbitals. The

simplest of these is direct exchange, in which electrons on neighbouring magnetic

atoms directly interact with one another [10]. In that case, the lowest-energy con-

figuration is the spatially symmetric bonding orbital and it will be occupied by

a pair of electrons. Since the overall wavefunction of the system has to be anti-

symmetric under the exchange of the two electrons, having a symmetric spatial

part of the wavefunction means that the spin part must be antisymmetric (a sin-

glet), thus resulting in an antiferromagnetic interaction. However, in real crystals

neighbouring magnetic ions are usually too far apart to have a significant over-

lap between the wavefunctions of their unpaired electrons [10]. This means that

in most cases, direct exchange cannot explain the presence of antiferromagnetic

exchange couplings and alternative mechanisms have to be considered.
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The most common way how exchange couplings arise in ionic solids is a mechanism

called superexchange or Kramers-Anderson exchange [11, 12]. It requires that

the half-filled d-orbitals of the two interacting magnetic ions overlap with the

same filled p-orbital of an intermediate ion. This is often the case in oxides and

halogenides (e.g. Cu(OH)Cl), where magnetic ions are usually separated by ligands

with a filled p-shell.

The Hubbard model [13] gives us a framework in which to describe superexchange.

It is one of the simplest approximate models in solid-state physics, describing

interacting particles on a lattice by using only two terms in the Hamiltonian:

Ĥ = −
∑
i

∑
j<i

∑
σ

tij(ĉ
†
i,σ ĉj,σ + ĉ†j,σ ĉi,σ) + Ueff

∑
i

n̂i↑n̂i↓ (2.2)

Here, σ denotes the spin projection (↑ or ↓). ĉ†i,σ and ĉi,σ are the creation and

annihilation operators of spin-σ particles on site i, making n̂iσ = ĉ†iσ ĉiσ the corre-

sponding particle number operator. The first term describes the kinetic energy of

the particles, it allows electrons to jump from one site to another. The strength of

the interaction between two sites is described by the hopping parameter tij. The

second term assigns the energy penalty Ueff for having two particles on the same

site – without it, the formula reduces to the simple tight-binding model.

In the strongly correlated regime where interactions between sites are weak (tij �

Ueff), it can be shown by perturbation theory that the Hubbard model leads to

Heisenberg exchange couplings Jij = 4t2ij/Ueff [14], which are always antiferromag-

netic. The effect can be understood by thinking of the hopping term as allowing

antiferromagnetically oriented spins to be delocalised over neighbouring sites (al-

beit at the energy cost Ueff), thus reducing their kinetic energy. If the two spins

are parallel, this delocalisation is not possible – by the Pauli principle, two elec-

trons with the same spin are not allowed to occupy the same site, hence intersite

hoppings are forbidden. As a result, if the structure of a compound shows that

two magnetic ions are linked by an oxygen atom, we expect superexchange to give

rise to an antiferromagnetic exchange coupling between them.
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However, this does not mean that only antiferromagnetic couplings can occur

between localised magnetic moments. If the angle between the magnetic site -

ligand bonds is around 90◦, then the half-filled d-shells of magnetic ions only

overlap very little with the same p-orbital and superexchange is not the dominant

interaction mechanism. By using LiCu2O2 as an example compound, it has been

shown that a ferromagnetic interaction dominates in the case of a near-90◦ Cu-O-

Cu angle. This ferromagnetic interaction has been attributed to Hund’s coupling

on the ligand site, because DFT calculations indicate substantial mixing between

Cu and O orbitals [15]. Intuitively, this can be understood in terms of a second-

order process in which two Cu2+ sites receive an electron from two filled p-orbitals

of the same oxygen ion. If the spins on the Cu sites are initially parallel, the oxygen

ion is left with two parallel unpaired electrons on its p-orbitals. Conversely, if the

Cu spins are initially antiparallel, there will be two electrons with antiparallel

spins on the oxygen p-orbitals. Due to Hund’s coupling between the two unpaired

electrons on the oxygen, the former configuration is favoured over the latter one

and a ferromagnetic interaction is observed.

The Heisenberg model does not capture all possible magnetic interactions that

can occur between localised magnetic moments. Quite commonly, Dzyaloshin-

sky–Moriya (DM) interactions [16, 17] need to be added to the Heisenberg model

to account for all details of the real magnetic behaviour. The form of Eq. (1) im-

plies that the magnetic response does not depend on the direction of the applied

field, which is rarely the case experimentally. Also known as the anisotropic ex-

change interaction, if present between sites i and j it introduces to the Hamiltonian

the term

Ĥij = Dij · Ŝi × Ŝj . (2.3)

The DM interaction has been found to be the leading source of anisotropy in

cuprates [14]. It arises if spin-orbit interaction is considered on top of superex-

change, and as such a correction it has a much smaller magnitude than the main

Heisenberg exchange coupling, |Dij| � Jij. Since the effect of the DM interac-

tion is to cant the spins slightly, it is sometimes noticed as a small ferromagnetic

correction to a normally antiferromagnetic system.
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Due to the mechanism underlying the origin of DM interactions, it can only arise

between two sites if the crystal does not have inversion symmetry with respect to

the centre of the line connecting the two magnetic ions [17]. Therefore it is possible

to tell whether an exchange coupling can be influenced by DM corrections just by

inspecting the crystal structure of the compound.

The brief description of magnetic interactions that has been presented so far is of

course incomplete and remains restricted to insulators. However, due to the many-

body nature of condensed matter phenomena and the tight connection between

magnetism and strong electronic correlations, no such complete description exists.

The only way to figure out a detailed microscopic model of an actual compound is

by undertaking a comprehensive study combining its experimental properties and

simulation results.

2.2 Low-dimensional magnetism in Cu2+ com-

pounds

The Cu2+ ion with its [Ar]3d9 electron configuration contains an unpaired electron

and thus is magnetic. Furthermore, as it is only one electron short of having a

filled d-shell, the ion has a fixed total spin S = 1
2
. This is the simplest possible case

for microscopic modelling, and it means that systems with Cu2+-based magnetism

can be modelled with better precision than most others.

Another benefit of studying Cu2+ compounds is the (near) lack of spin-orbit cou-

pling when compared with heavier elements, meaning that its spin is not mixed

with orbital angular momentum considerably. This is seen most clearly from the

experimentally observed magnetic moments of Cu2+ ions in various compounds.

The magnetic moment of a spin-1
2

particle can be expressed as µ = 1
2
gµB, with

g the g-factor. The absolute value of a free electron’s g-factor is 2.002319 and

in most low-dimensional Cu2+ compounds it is found to be close to that, often

around 2.15 . . . 2.20 [18, 19]. Given that the g-factors of some heavy S = 1
2

ions
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easily exceed the free electron value by a factor of two or more (e.g. g = 5.43 in

the model compound Yb2Pt2Pb [20]), we see the values for Cu2+ ions are very

close to the free electron one. Due to the weakness of spin-orbit coupling in Cu2+

compounds, their magnetic properties are almost independent of the direction of

the applied magnetic field, i.e. have very low anisotropy.

Many examples of low-dimensional S = 1
2

magnetism have been discovered in

Cu2+ compounds. Cu2+ ions are often found in CuX4 plaquettes, where each

copper ion is surrounded by four anions X, with X = O, F, Cl, etc. These pla-

quettes in turn can be arranged in various configurations, most often forming

chains or layers of some sort and resulting in low-dimensional interaction topolo-

gies (see Figure 2.1). Examples of one-dimensional magnetism in Cu2+ compounds

include straightforward microscopic magnetic models like ferromagnetic and anti-

ferromagnetic chains, a nearly ideal realisation of the latter which was found in

KCuF3 [21]. More interesting 1D configurations also exist, e.g. two- and three-leg

antiferromagnetic spin ladders in SrCu2O3 and Sr2Cu3O5, respectively [22]. Two-

dimensional examples are even more numerous. Two of the more noteworthy and

exotic configurations that have been observed in Cu2+ compounds are the kagome

lattice (in ZnCu3(OH)6Cl2, known for its quantum spin liquid state [23]) and the

Shastry-Sutherland lattice (in SrCu2(BO3)2 [24]).

Some of the models in Figure 2.1 display a phenomenon called geometrical frus-

tration, meaning that the geometry of the lattice introduces conflicting exchange

couplings between sites. Strongly frustrated models have sparked much interest in

physics, since frustration often gives rise to complex effects in the system. Strong

frustration can lead to a multitude of ground states even at zero temperature. As

another consequence, frustration shifts the onset of magnetic ordering to much

lower temperatures than would otherwise be expected. Examples of strongly frus-

trated systems include the triangular lattice, the kagome lattice and the Shastry-

Sutherland lattice (Figure 2.1).

It has been proved rigorously that at any finite temperature, no one- or two-

dimensional isotropic Heisenberg spin model with finite-range exchange interaction
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(a)

(b)

(c) (e)

(d) (f)

Figure 2.1: Examples of lattices encountered in microscopic magnetic mod-
elling: (a) chain, (b) ladder, (c) square lattice, (d) Shastry-Sutherland lattice,
(e) triangular lattice, (f) kagome lattice. Of these examples, (d)-(f) are geomet-

rically frustrated.

can undergo long-range magnetic ordering [25]. Despite that, magnetic ordering is

commonly seen even in the compounds that are characterised by low-dimensional

microscopic magnetic models. This apparent contradiction arises from the fact

that none of the real-world materials are really one- or two-dimensional, there

always exist additional couplings that link the chains or layers together into a

three-dimensional structure. These interchain/interlayer couplings can be very

weak, but in no case are they identically zero. Also, it turns out that even though

the magnetic ordering temperature depends on the magnitude of the interchain/in-

terlayer coupling, already a very weak coupling is sufficient to shift the ordering

temperature to moderate values. It has been shown that in case of the spin-1
2

antiferromagnetic square lattice with intralayer coupling J , interlayer couplings

over 0.001J already give rise to Néel ordering above temperature 0.25J [26]. Of

course, in a frustrated system the effect will be much less pronounced, but still we

expect magnetic ordering to take place at a reasonable temperature. As a result,

when a compound is said to display e.g. two-dimensional magnetism, in reality it

is quasi-two-dimensional and can show signatures of magnetic ordering, albeit at

very low temperatures.
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3. Analysis of previous results on Cu(OH)Cl

3.1 Crystal structure of Cu(OH)Cl

By X-ray diffraction studies, Cu(OH)Cl has been found to crystallise in space

group P21/c and thus to belong in the monoclinic crystal system [27]. Its unit cell

parameters are outlined in Table 3.1.

Table 3.1: Unit cell parameters of Cu(OH)Cl.

Lengths (Å) Angles

a 6.2953(4) α 90◦

b 6.6649(11) β 118.138(11)◦

c 5.5580(4) γ 90◦

Due to the low atomic number of hydrogen (meaning low electron density at H

atoms), experimentally determined positions of hydrogen atoms are subject to

large uncertainty. In fact, it has been shown that using imprecise values of hy-

drogen positions can lead to physically unsound results in microscopic magnetic

modelling [28]. Therefore before a detailed analysis of magnetic interactions in a

compound, hydrogen positions must often be refined. In case of Cu(OH)Cl, the

need for that is clear: the experimentally determined structure [27] has O-H bond

length 1.3 Å instead of the usual 1.0 [28]. To solve the problem, the hydrogen

position was allowed to relax in a series of LDA calculations for geometry opti-

misation – a method that has been shown to be a viable alternative to elaborate

experiments [29]. This way the expected O-H bond length 1.0 Å was obtained
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(for computational details, see Section 4.1.2). All subsequent calculations and

discussions in this work are based on this hydrogen-relaxed crystal structure, the

Wyckoff positions of which are given in Table 3.2.

Table 3.2: Wyckoff positions (in fractional coordinates) of atoms in the ex-
perimental (Hexp) and hydrogen-relaxed (Hrel) structures. Upon relaxation, the

O-H bond length decreased from 1.3 Å to 1.0 Å.

Atom x/a y/b z/c

Cu 0.03201(7) 0.11772(6) 0.28577(7)

Cl 0.3115(1) 0.0907(1) 0.1334(2)

O 0.8807(4) 0.1478(3) 0.5318(5)

Hexp 0.674(14) 0.128(8) 0.528(12)

Hrel 0.7006 0.1635 0.4309

The crystal structure of Cu(OH)Cl has been visualised in Figures 3.1 and 3.2.

Figure 3.1 illustrates how Cu(OH)Cl consists of layers running along bc-planes.

Neighbouring layers are held together by hydrogen bonds between the O-H group

of one layer and Cl ion of the next.

c

a
b

O

Cu

Cl

H

Figure 3.1: The crystal structure of Cu(OH)Cl. Layers of dimers run along
bc-planes.

In Figure 3.2, a single layer is shown in more detail (hydrogen atoms have been

omitted for clarity). Each Cu ion is surrounded by one chlorine and three oxygen

atoms, constituting a CuClO3 plaquette. Pairs of edge-sharing plaquettes form
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dimers, and additionally each plaquette shares a corner (an oxygen ion) with four

others.

O

Cu

Cl

a
b

c

Figure 3.2: A single layer of Cu(OH)Cl, composed of dimers of CuClO3 pla-
quettes. Each plaquette shares an oxygen corner with five others, thus presum-
ably giving rise to exchange couplings. The unit cell is outlined with a rectangle.

For clarity, H atoms have been omitted.

Because of the layered structure of Cu(OH)Cl, it can be expected to display quasi-

two-dimensional magnetism, with much stronger exchange couplings within the

layers than between them. There should be a sizeable antiferromagnetic exchange

coupling between each pair of neighbouring Cu2+ ions that are linked by an oxygen

ion, arising via the superexchange mechanism (as explained in Section 2.1). In the

case of a layer of Cu(OH)Cl, this reasoning leads us to consider the Shastry-

Sutherland lattice as a possible model.

3.2 The Shastry-Sutherland model

The crystal structure and S = 1
2

nature of Cu(OH)Cl suggest that its magnetic

properties could be described by the Heisenberg model on the Shastry-Sutherland

lattice, first proposed and analysed in 1981 [7]. The Shastry-Sutherland lattice

(Figure 3.3) is a square lattice of couplings J ′ with some extra diagonal bonds
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J that introduce frustration to the system. However, what makes this particu-

lar model interesting is that it resorts very well to theoretical analysis – in the

parameter range J ′/J � 1, the system has a simple exact ground state.

Figure 3.3: The Shastry-Sutherland lattice. J ′ couplings form a square lattice
(broken lines) with some extra diagonal J couplings (solid lines). The unit cell

of the lattice (thin-line square) contains four sites.

In Cu(OH)Cl, couplings within dimers of copper plaquettes correspond to J of

the Shastry-Sutherland model. In addition to being part of a dimer, each copper

plaquette shares a corner with two others, giving rise to interdimer couplings J ′.

It must be noted that in Cu(OH)Cl, these two plaquettes with which a corner is

shared are not equivalent by symmetry, meaning that in principle there are two dif-

ferent interdimer couplings – we will denote these by J ′1 and J ′2. However, whether

the two have the same magnitude or not cannot be determined by inspection,

therefore further discussion has to be postponed until Chapter 5.

The first real-world example of the Shastry-Sutherland model was discovered in

1999 when magnetic properties of SrCu2(BO3)2 were investigated [24]. It became

the first compound with a spin system that could be described by the Heisen-

berg model on the Shastry-Sutherland lattice. In Figure 3.4, a schematic of the

structure and exchange couplings of SrCu2(BO3)2 is given. Even though the ge-

ometry looks different from that of the Shastry-Sutherland lattice, the two are

topologically equivalent.

Since the discovery of SrCu2(BO3)2, the Shastry-Sutherland model has drawn

considerable attention. The main reason for that interest was the discovery of

plateaux in the magnetisation curve of SrCu2(BO3)2 corresponding to 1
4

and 1
8

of
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Figure 3.4: A schematic of the structure (a) and exchange couplings (b) of
SrCu2(BO3)2. Cu2+, B3+ and O2− ions are denoted by filled circles, small
open circles and large open circles, respectively. The arrangement of exchange
couplings is topologically equivalent to the Shastry-Sutherland lattice. Figure

from Ref. [24].

the saturation moment [24], the first time when quantised magnetisation plateaux

were observed in a 2D system. By now, the magnetisation curve of SrCu2(BO3)2

has been measured up to 109 K and plateaux at 1
3

and 1
2

of the saturation moment

have been detected [30, 31]. Using various simulation methods, the emergence of

magnetic plateaux has also been thoroughly investigated theoretically, and spin

structures at plateaux have been predicted. Intriguingly, translational symmetry

of the lattice is spontaneously broken at the plateaux (except for the one at 1
2

of

the saturation moment) [8].

After SrCu2(BO3)2, several other compounds with the Shastry-Sutherland lattice

have been found, but so far none of those has been directly comparable with

SrCu2(BO3)2. For (CuCl)LaNb2O7, a spin-1
2

Shastry-Sutherland lattice has been

proposed, with ferromagnetic (and different) couplings J ′1 and J ′2 [32]. A few

classes of compounds have been discovered that contain rare-earth ions arranged

in a Shastry-Sutherland lattice: Ln2BaPdO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Dy,

Ho) [33], rare-earth tetraborides RB4 (R = Tm, Tb, Dy, Ho, etc.) [34, 35], and

metallic compounds Yb2Pt2Pb, Ce2Pt2Pb, Ce2Ge2Mg [20, 36].

In all these cases, for various reasons the physics tends to be only loosely related to
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the original Shastry-Sutherland model with spin-1
2

isotropic Heisenberg couplings.

One problem with rare earth ions is that spin-orbit coupling is strong enough

to have a noticeable effect and produce a substantial anisotropy (e.g. presence

of an easy axis), which makes magnetic properties of the system dependent on

the orientation of the crystal with respect to the direction of the applied magnetic

field. In these cases, the Ising model is often more appropriate than the Heisenberg

model [37]. In metallic compounds, additional complications arise from Ruderman-

Kittel-Kasuya-Yosida (RKKY) interactions, which are generally long-range and

not restricted to J and J ′ [38–40]. Finally, most of the mentioned rare earth ions

have S > 1
2
, meaning that the nice properties of the Shastry-Sutherland model

concerning the formation of dimer singlets and triplet excitations are lost. Still,

magnetisation plateaux have been observed in some of these compounds [34–36].

The properties of the Shastry-Sutherland model depend heavily on the ratio J ′/J .

Due to the lack of experimentally available compounds that would follow closely

the S = 1
2

Shastry-Sutherland model (other than SrCu2(BO3)2), the work on

this dependence has so far been theoretical. The main point of interest has been

the quantum phase diagram of the Shastry-Sutherland model. Because of the

extreme frustration present in the lattice, performing accurate simulations has

been extremely challenging – over time, the problem has been approached with

the help of many different methods [41–45].

Even though full analysis of the J ′/J phase diagram is complicated, the extreme

cases can be understood relatively easily [7]. For J ′/J � 1, the system consists of

(nearly) isolated dimers, leading to the exact dimer singlet ground state. This is

called the dimer phase, there is a spin gap (i.e. a gap in the spectrum of magnetic

excitations) and no long-range order. In contrast, for J ′/J � 1, the system reduces

to a 2D square lattice Heisenberg model, the ground state of which has long-range

antiferromagnetic order and no spin gap (the Néel phase) [46].

The most interesting question concerns the intermediate region between the dimer

phase and the Néel phase. Early studies suggested that there might be an addi-

tional intermediate phase, but initially there was some confusion about its exact
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nature [8]. The overwhelming majority of more recent simulations agree that

there is a plaquette phase with short-range order around J ′/J = 0.7 [42, 43], not

a columnar-dimer phase [44] or a helical phase [45], as alternatively proposed.

State-of-the-art infinite projected entangled-pair states (iPEPS) simulations put

the intermediate plaquette phase in the range 0.675(2) < J ′/J < 0.765(15) [43].

The phase diagram of the Shastry-Sutherland model as determined by iPEPS

simulations is given in Figure 3.5.

J'
J

Figure 3.5: Phase diagram of the Shastry-Sutherland model as a function
of J ′/J . The width of a bond is proportional to the magnitude of the bond
energy. Full lines correspond to positive energies and dashed lines to negative.
The arrows in the right panel illustrate the Néel order. Figure from Ref. [43].

Clearly, there is a wealth of interesting physical phenomena linked to the Shastry-

Sutherland lattice. Combined with the lack of well-behaved real-world examples,

there is a strong incentive to look into the magnetic properties of Cu(OH)Cl more

thoroughly. If confirmed as a Shastry-Sutherland compound, it would give a rare

opportunity to investigate the details of the model and validate or refute theoretical

predictions.

3.3 Experimental properties of Cu(OH)Cl

Magnetic susceptibility, magnetisation and heat capacity measurements have been

performed on powder samples of Cu(OH)Cl, each of these physical properties can

display features relevant to the microscopic magnetic model. Some qualitative
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information may be extracted from the experimental curves simply by inspection

and used to guide further modelling. However, details like exactly which model

is most suitable and the numerical values of its parameters can only be deduced

after theoretical simulations and fitting the data.

3.3.1 Magnetic susceptibility

The Curie law [47] predicts the molar magnetic susceptibility of a collection of

isolated magnetic moments with spin angular momentum quantum number S to

be

χ =
NAg

2µ2
BS(S + 1)

3kBT
. (3.1)

The g-factor of a free electron is g ≈ 2.002319, but due to spin-orbit coupling its

value in a real compound is different and has to be fitted from experiment. In

the presence of exchange couplings between magnetic moments, the temperature

dependence of the Curie law is modified from χ ∝ T−1 to χ ∝ (T+θ)−1 (the Curie-

Weiss law [48]). If we also take into account that for an electron S = 1
2
, we obtain

the final expression for magnetic susceptibility that is used to fit experimental

data:

χ =
NAg

2µ2
B

4kB

1

T + θ
. (3.2)

The theta-temperature θ is negative for ferromagnetic compounds. In case of

positive values of θ, we have a compound in which antiferromagnetic exchange

couplings are prevalent.

The magnetic susceptibility of Cu(OH)Cl was measured with Quantum Design

MPMS SQUID magnetometer in the temperature range 2 – 380 K in various ap-

plied magnetic fields up to 5 T. According to the manufacturer, the sensitivity of

magnetic moment measurements is < 10−7 emu, which is less than 0.01% of our

measured values (mostly above 10−3 emu). Therefore the main source of uncer-

tainty for our experimental susceptibility and magnetisation curves is the possible

presence of impurities in the sample, which may lead to systematic errors. Fig-

ure 3.6 shows the data collected in two different applied fields. There is only a
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minor difference, which can be attributed to trace amounts of a ferromagnetic

impurity. The curve obtained for highest applied magnetic field (i.e. 5 T) was

used for detailed analysis and fitting, as it is least influenced by the presence of

ferromagnetic impurities.
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Figure 3.6: Experimental magnetic susceptibility curves of Cu(OH)Cl, mea-
sured at B = 5 T and B = 0.5 T. The susceptibility maximum is very com-

pressed, probably due to strong frustration.

In general, the magnetic susceptibility curve behaves like expected for a mate-

rial with prevalently antiferromagnetic exchange couplings. The high-temperature

part of magnetic susceptibility curve follows the Curie-Weiss law, as can be best

seen from the fact that its inverse is linear at high T (Figure 3.7). As temperature

is lowered, the curve starts deviating from the Curie-Weiss law due to short-

range magnetic ordering. Antiferromagnetic interactions (that were dominated

by thermal motion at higher temperatures) start influencing spins noticeably and

decrease the total magnetic moment of the crystal. As a result, a broad maxi-

mum of magnetic susceptibility occurs. Curiously, for Cu(OH)Cl the maximum is

very compressed in comparison with what we observe in many other Cu2+ com-

pounds [22, 28, 29, 49, 50]. This might be interpreted as an effect of the strong

geometrical frustration of exchange couplings in the Shastry-Sutherland lattice.

The susceptibility curve gave a good Curie-Weiss fit above 250 K (Figure 3.7)

and resulted in the theta-temperature θ = 80 K with g = 2.07. The fact that we

18



obtained a g-factor close to 2 confirms that spin-orbit coupling is relatively weak.

And as expected, θ is positive since antiferromagnetic couplings dominate between

magnetic moments in Cu(OH)Cl. The theta-temperature is related to the values

of exchange couplings in the following way [51]:

θ =
S(S + 1)

3

∑
j

Jij =
1

4

∑
j

Jij. (3.3)

In other words, θ is (a quarter of) the sum of all exchange couplings affecting a

magnetic site. The usefulness of this relation becomes evident in Section 5.1.3 – it

presents a very straightforward way how to compare ab-initio values of exchange

couplings with experiment.
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Figure 3.7: Inverse magnetic susceptibility with its Curie-Weiss fit above
250 K, giving the theta-temperature θ = 80 K with g = 2.07.

Upon investigating the low-temperature region of magnetic susceptibility more

closely (Figure 3.8), we find that in addition to the broad maximum there is

an anomaly that can be associated with a phase transition, namely the slope

changes abruptly at 11 K. However, this feature of the susceptibility curve is

smeared out in practice, which is why a peak in the magnetic heat capacity is

usually sought for to identify a phase transition. Luckily, it has been shown by

a rather general theoretical argument that variation of the magnetic specific heat
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of a simple antiferromagnet should be very close to the behaviour the function

d(χT )/dT , especially in the region near the transition to the Néel phase [52].

As shown in Figure 3.8, there is a clear peak in d(χT )/dT , indicating a phase

transition at 11 K. This suggests that Cu(OH)Cl could be in the Néel part of the

phase diagram of the Shastry-Sutherland model.
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Figure 3.8: Low-temperature magnetic susceptibility results. The curve χ(T )
has an abrubt change of slope at 11 K, whereas d(χT )/dT displays a clear peak
at 11 K. The behaviour of this function should closely resemble that of the

magnetic heat capacity.

3.3.2 Magnetisation isotherm

The magnetisation curve was obtained for Cu(OH)Cl as a combination of two

measurements. First, a magnetisation isotherm at T = 2 K was measured with

Quantum Design MPMS SQUID magnetometer up to 5 T. Because of the diffi-

culty of sustaining higher magnetic fields for extended periods, a magnetisation

isotherm at T = 1.5 K was measured up to 59 T in a pulsed magnetic field at the

Dresden High Magnetic Field Laboratory. The final experimental magnetisation

curve (Figure 3.9) is linear and lacks noticeable structure. Although at high fields
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the curve seems to deviate from a straight line, these fluctuations often accompany

a pulsed field experiment and are most likely artefacts.

0.2

0.1

20 40 60

0

0
B (T)

M
 (

μ
B
/C

u)

Figure 3.9: Experimental magnetisation isotherm at T = 1.5 K.

The most interesting feature of the magnetisation curve is that it starts from the

origin, i.e. magnetisation starts increasing linearly already at low external fields

instead of becoming non-zero only at some finite external magnetic field. This

demonstrates that there either is no spin gap in Cu(OH)Cl or it is so low that lies

below our experimental sensitivity. This is an indication that Cu(OH)Cl is not in

the dimer phase part of the Shastry-Sutherland model quantum phase diagram.

However, it is still possible that the spin gap is very small and remains undetected.

This could be the case if Cu(OH)Cl were situated still in the dimer phase part of

the phase diagram, but very close to the phase transition to the Néel region.

3.3.3 Heat capacity

Specific heat measurements can be useful in determining magnetic properties of

materials, but it has to be kept in mind that the overall heat capacity of a sample

that is measured experimentally is a superposition of contributions from various
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physical effects. At moderate to high temperatures, the contribution from lat-

tice vibrations (phonons) dominates over all the other components. According

to the Debye model [53], at T � TD the phonon contribution is proportional to

T 3, i.e. decreases very rapidly when temperature is lowered. Therefore the only

region where it is possible to observe the magnetic heat capacity is at very low

temperatures.

The heat capacity of Cu(OH)Cl was measured in the temperature range 2 – 30 K,

first without any magnetic field and then in an applied field of 7 T (see Figure 3.10).

Measurements were performed at constant pressure with the Quantum Design

PPMS (Physical Property Measurement System) calorimeter. This instrument

uses a thermal relaxation method for measuring heat capacities, the underlying

operating principle of which is the following. The sample is first stabilised at some

temperature, then a short pulse of heat is given that warms the sample up to a

slightly higher temperature. The heat capacity of the sample is determined from

the following exponential decay of temperature.

0 5 10 15 20 25 30

0

1

2

3

4

5

6

●●●
●●●

●●●
●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●
●●●

●●●

●●●

●●●●●●●●●

●●●

●

●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●
●●●
●●●
●●●

●●●

●●●
●●●
●●●
●●●
●●●●●●

●

●●●

●●●

●●●
●●●

●●●●●●●●●●●●

T (K)

C
p 

(J
 m

ol
-1

 K
-1

)

●
B = 0 T

B = 7 T

Figure 3.10: Specific heat, measured at B = 0 T and B = 7 T. The peak at
11 K indicates a phase transition into a magnetically ordered state.
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There is a peak in specific heat with maximum at 11 K in case of both B = 0 T

and B = 7 T. The peak is fairly localised and resembles a lambda-type anomaly

expected for a second order phase transition. This is a very clear signature of

magnetic ordering, indicating that in Cu(OH)Cl a phase transition to a state with

long-range magnetic ordering occurs at 11 K. That observation is in excellent

agreement with the abrupt change in slope of the magnetic susceptibility curve

and the presence of a peak in the function d(χT )/dT , all at 11 K.

Based on the analysis of experimentally measured susceptibility, magnetisation

and specific heat curves, it can thus be concluded with high certainty that if

Cu(OH)Cl follows the Shastry-Sutherland model, then it has to lie in the Néel

phase part of the phase diagram.
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4. Methods

4.1 Ab-initio calculations

4.1.1 Principles of density functional theory

Ab-initio calculations carried out in this work were based on DFT, a powerful

method that allows calculating the ground state electron density (and related

properties) of a system when only given the crystal structure. The main ideas

behind DFT are summarised by the Hohenberg-Kohn theorem [54]. It states that

the ground-state electron density of a system defined by an external potential

uniquely determines the Hamiltonian operator, so that when the former is known,

all other properties of the system can be calculated in principle, including the

many-body wave function. Furthermore, this ground state electron density can be

obtained by variational methods, more precisely by minimising the ground state

energy functional.

The main reason for the appeal of DFT is that the ground state electron density

can be calculated without having to know the ground state wavefunction. All

that is needed is an expression of the ground state energy as a functional of the

electron density. The problem here is that the explicit form of this expression is

not known.

In the Kohn-Sham framework [55], the ground state electron density is expressed

in terms of a fictitious system of non-interacting electron orbitals with the same

ground state density as the original system of electrons. Now the problem can
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be reduced to a collection of standard single-particle differential equations, with

the particles moving in an effective potential that depends on the overall electron

density. After solving this set of equations self-consistently in a series of iterations,

the ground state electron density can be extracted.

The final remaining problem with Kohn-Sham equations is that in addition to sim-

ple Coulomb interaction parts, the effective potential contains a term for which

an exact expression is not available generally, namely the exchange-correlation

functional. Several schemes of approximating the exchange-correlation functional

have been proposed, for each of which many different parametrisations exist. Cal-

culations carried out in this work were based on two schemes: the local density

approximation (LDA) and the generalised gradient approximation (GGA).

Homogeneous free electron gas is the only system for which the exact expression

of the exchange-correlation functional is known. In LDA, each small volume of

electrons is treated locally like a uniform free electron gas, the full exchange-

correlation functional is obtained simply by integrating over the whole system [56].

This very basic approach works surprisingly well, which has made LDA the most

widely used approximation. LDA can be easily generalised to take into account

electron spin, thus leading to local spin density approximation (LSDA) [57].

There are some well-known problems with LDA, for example it systematically

underestimates the band gap [58]. While this particular issue is not a big con-

cern in this work, where the band gap depends on strong Coulomb correlations

anyway, sometimes more precise results can be obtained with generalised gradient

approximation. GGA is also a local approximation scheme, but in addition to

the value of electron density in each small volume, the gradient of electron den-

sity is taken into account as well [59]. For some of our purposes, results of LDA

and GGA are known not to differ significantly [29] – in these cases, LDA was

preferred due to its robustness. However, in DFT+U calculations (Section 4.1.2)

even tiny differences in ground state energy can have a big impact on predicted

values of exchange couplings. To ensure better precision of DFT+U results, GGA

(in Perdew–Burke–Ernzerhof 1996 parametrisation [60]) was invoked.
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4.1.2 DFT calculations on Cu(OH)Cl

In this work, all DFT calculations were carried out using the full-potential scalar-

relativistic code FPLO9.05-39 [61]. In FPLO, the solution to Kohn-Sham equa-

tions is constructed as a linear combination of overlapping local orbitals, which

means that the crystal potential consists of localised overlapping potential contri-

butions. As opposed to many other codes where the basis set for a periodic system

is made out of plane waves (or similar) for computational convenience, the basis

set of atomic-like orbitals in FPLO carries chemical information. This allows to

project the final electron density on local orbitals straightforwardly, making ex-

traction of model parameters from band structure calculations more reliable. In

comparison with other tools, the main strength of FPLO is that the crystal poten-

tial is fully taken into account, as opposed to using pseudopotentials for approx-

imating it. Also, core electrons are treated in the same way as valence electrons.

All this increases the accuracy of results computed by FPLO, but of course brings

with it the inevitable trade-off in computation times, limiting the size of systems

that can be investigated.

All initial calculations (relaxing the hydrogen position and evaluating the band

structure) were done using LDA with Perdew-Wang parametrisation [62] for the

exchange-correlation potential. The process of finding the relaxed location of the

hydrogen atom was performed by carrying out a cycle of LDA calculations. Each

step of the cycle included calculating the electron density for the structure, finding

the force on the hydrogen atom and adjusting its position. This was repeated until

the force on the H atom was below 10−2 eV/Å.

The first estimate of the microscopic magnetic model of Cu(OH)Cl was obtained

from its LDA band structure. This is not straightforward – LDA calculations are

not spin-polarised and correlation effects in the Cu 3d shell are not taken into

account. However, an indirect approach exists that allows us to utilize the LDA

band structure. As predicted by crystal field theory (Section 5.1.1), the highest

occupied bands in Cu(OH)Cl arise from Cu 3dx2−y2 atomic orbitals. Therefore if
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we use the tight-binding approximation on these orbitals, we can obtain hopping

parameters between them by fitting the relevant bands. Finally, these hopping

parameters between half-filled orbitals can be analysed with the Hubbard model

(Section 2.1), which gives us the values of antiferromagnetic exchange couplings

between Cu sites.

Instead of fitting the LDA band structure manually, the procedure of obtaining a

tight-binding fit can be automatised with the help of Wannier functions [63]. In our

case, a Wannier function was constructed from the 3dx2−y2 atomic orbital of each

Cu site in the unit cell. Running the fitting procedure on the band structure then

resulted in the set of best-fitting hopping parameters between Wannier functions

centred at different Cu atoms. The tight-binding model was mapped on a one-

orbital Hubbard model with effective on-site Coulomb repulsion Ueff = 4.5 eV, the

value found to be appropriate for Cu2+ 3d orbitals in cuprates [49, 64, 65].

In the strongly correlated regime t � Ueff, a good approximation for the anti-

ferromagnetic contribution to a coupling originating from superexchange can be

found using second-order perturbation theory: JAFM = 4t2/Ueff [12]. Even though

the results obtained by using this formula neglect the ferromagnetic contribution,

they still give us the first estimate about which couplings are important for the

microscopic magnetic model. Furthermore, as we expect superexchange to be the

dominant pathway giving rise to couplings between Cu sites, results obtained in

this manner should correspond reasonably well to reality.

To get another estimate of numerical values of exchange couplings, we carried out

DFT+U calculations. This is an alternative way for taking into account correla-

tion effects in the Cu 3d shell, and it should incorporate both ferro- and antiferro-

magnetic contributions to J-values [66]. DFT+U calculations are spin-polarised,

meaning that calculations can be started from various initial spin configurations

and result in a different ground state energy for each configuration. Additionally,

correlation effects for specified orbitals are included by assigning an energy penalty

Ud for double occupancy of these orbitals.
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For Cu(OH)Cl, total energies of various collinear spin configurations were calcu-

lated using this method and mapped onto the classical Heisenberg model. To be

able to assign different initial magnetic moments to different Cu sites, symmetry of

the unit cell was reduced to P1. Additionally, the size of the unit cell was doubled

in the crystallographic a-direction. This way we were able to look into both intra-

and interlayer couplings. By subtracting total energies of suitably chosen initial

spin configurations from one another, values for exchange couplings between Cu

sites were obtained.

We used the fully localised limit double counting scheme with the on-site Coulomb

repulsion parameter in the range Ud = 8.5± 1.0 eV and the Hund’s exchange pa-

rameter Jd = 1 eV. This choice of parameters follows previous studies, best results

have been obtained by using those Ud values [50]. The final Ud was chosen in such

a way that it would reproduce the θ-temperature θ = 80 K determined from exper-

imental data in section 3.3.1. As an additional measure, we verified that varying

the Ud value by up to 0.5 eV did not make a qualitative difference to our results.

In all DFT calculations, k mesh density was increased until convergence of re-

sults was achieved. For LDA calculations (4 symmetry-inequivalent atoms), this

meant using 1728 k points in the symmetry-irreducible part of the Brillouin zone,

whereas for DFT+U calculations (32 symmetry-inequivalent atoms), 64 k points

were enough to achieve convergence.

4.2 Model simulations

After a microscopic magnetic model has been constructed for a compound, it

is the next logical step to predict the physical properties that arise from that

model and compare these with experiment. Of the experimental data available for

Cu(OH)Cl, magnetic susceptibility and magnetisation curves are of most interest

for that purpose. The heat capacity data includes a phonon contribution and thus

cannot be directly fitted.
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There are several methods that enable simulations of thermodynamic properties of

microscopic magnetic models. In this work, two complementary approaches were

taken: diagonalisation of the Hamiltonian and high temperature series expansions.

The usual method of choice for these tasks is Quantum Monte Carlo, but it was

not used in this work. Quantum Monte Carlo simulations allow direct modelling

of the many-body wavefunction and thus often give very good results, but this

tool cannot be used to analyse strongly frustrated systems and was therefore not

applicable to Cu(OH)Cl [67].

4.2.1 Diagonalisation of the Hamiltonian

The Hamiltonian operator of a spin system can be represented as a matrix, the

eigenvalues of which can be found by diagonalising it. Once the energy eigen-

values have been obtained, one can proceed and calculate other thermodynamic

quantities from it, including magnetic susceptibility, magnetisation isotherms and

magnetic heat capacity. This method is in principle completely accurate as it does

not involve any computational approximations, and should therefore give reliable

predictions for physical properties of the system [68].

The problem with diagonalisation is that the Hilbert space of a collection of N

spin-1
2

particles has the dimension 2N . It means that the size of the Hamiltonian

matrix grows exponentially with the number of particles, and so do computation

times. This places a very sharp limitation on the maximum size of a system that

can be investigated using diagonalisation methods in reasonable time. Periodic

boundary conditions can be used to extend size of the system seemingly up to

infinity, but this still fails to capture phenomena that occur at larger scales than a

unit cell (or are incommensurate with it). Especially in case of strongly frustrated

models, the behaviour of a small system can be very different from a macroscopic

one. Therefore diagonalisation results have to be treated with caution for finite

size effects, especially when calculated for low temperatures [68].
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In addition to exact diagonalisation (ED) where all eigenvalues of a matrix are

precisely calculated, there are methods that utilise the sparsity of Hamiltonian

matrices, most notably the Lanczos algorithm [69]. Also, for some applications

only the lowest-lying eigenvalues are of importance. When these simplifications

are taken into account, slightly larger systems can be treated than by basic exact

diagonalisation. Still, currently systems with more than several tens of sites are

out of reach of diagonalisation methods.

In this work, exact diagonalisation simulations were carried out using the ALPS

simulation package (http://alps.comp-phys.org/) [70]. A square lattice consisting

of a single layer of 16 spin-1
2

sites with periodic boundary conditions was con-

structed, interactions between sites arranged according to the Shastry-Sutherland

model. Many different sets of values for exchange couplings were investigated, for

each of which magnetic susceptibility and magnetisation curves were calculated.

In addition, O. Janson performed Lanczos diagonalisation on our final model to

calculate the magnetisation curve more precisely on a lattice of 24 atoms.

As discussed in Section 2.2, two-dimensional models cannot undergo long-range

magnetic ordering and thus we cannot expect to see any signs of that in diagonal-

isation results. Also, finite size effects have to be kept in mind when analysing the

low-temperature regions of simulated curves, especially due to strong frustration

present in Cu(OH)Cl.

4.2.2 High temperature series expansions

Series expansions present another way for predicting thermodynamic properties of

a microscopic magnetic model. This method has its roots in statistical physics,

the starting point of it being the partition function of the system. In principle,

thermodynamic quantities like magnetic susceptibility and heat capacity can be

obtained from the partition function via appropriate manipulations, but again due

to the macroscopic size of any real system it is impossible in practice. However,

the expressions for thermodynamic properties can be expanded as power series of
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β = 1/kBT , and it is possible to estimate numerically the values of coefficients

for terms with lowest powers of β. At high enough temperatures higher-order

terms become negligible and the series give reasonable estimates of thermodynamic

properties [71].

Based on the microscopic magnetic model constructed using DFT results, J. Oit-

maa calculated several high temperature series expansions (HTSE) of magnetic

susceptibility. For various sets of model parameters, series coefficients were ob-

tained for terms up to 10th order in β (see Appendix A for the values of the

coefficients). Symmetric Padé approximation was performed on the series to in-

crease their temperature region of validity [72]. Using these Padé approximants,

we managed to get good fits of the experimental magnetic susceptibility curve

down to 100 K. Estimates for values of exchange couplings were extracted from

the fitted parameters. Finally, the fits were compared with one another according

to their sum of squared residuals to determine the one with best quality.

HTSEs do not output the physical magnetic susceptibility function, but rather

a reduced susceptibility curve. To fit experimental data with a HTSE, it has to

be scaled using g, J and values of some physical constants (see Appendix A for

details). That way in addition to J , the value of g can also be extracted from the

fit and then compared with the range of expected g-values for Cu2+ compounds.

Moreover, we included an extra temperature-independent fitting parameter +χ0

to correct for the diamagnetism of filled electron shells (core diamagnetism) [73].

The fact that the fitted value of this parameter was always very small and nega-

tive shows that χ0 really corresponded to core diamagnetism, thus justifying its

inclusion.
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5. Results

5.1 Ab-initio calculations

5.1.1 LDA density of states and band structure

The first set of ab-initio results were obtained from LDA calculations. Even though

the principal result of these calculations is the ground state electron density, that

quantity itself is not very helpful for understanding the physics of the system.

Instead, it is informative to visualise the density of states (DOS) and the band

structure (Figures 5.1 and 5.2, respectively).
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Figure 5.1: LDA density of states. The Fermi level is at zero energy, non-zero
DOS there is an artefact of using LDA. The isolated group of states near the

Fermi energy originates from Cu2+ eg orbitals.
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At first glance, the density of states and the band structure seem inappropriate for

an insulator like Cu(OH)Cl – the DOS at the Fermi level is non-zero, indicating

that the compound is metallic. This is a shortcoming that accompanies our use of

an approximation like LDA. In reality, the correlations effects in Cu2+ partially

filled 3d orbitals play a significant role, but they are not taken into account in

LDA. However, we can regard the LDA band structure as a first approximation

and treat correlations either on the model level or by the use of DFT+U .
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Figure 5.2: LDA band structure (yellow lines) showing the Cu2+ 3dx2−y2
and 3d3z2−r2 bands near the Fermi energy, together with its Wannier function
fit (green lines). The k path is defined as Γ(0, 0, 0), Y(0.5, 0, 0), C(0.5, 0.5, 0),
Z(0, 0.5, 0), Γ(0, 0, 0), B(0, 0, 0.5), A(0.5, 0, 0.5), E(0.5, 0.5, 0.5), D(0, 0.5, 0.5).

With the help of crystal field theory, we can rationalise the qualitative features

in the DOS and the band structure despite the shortcomings of LDA. Due to the

octahedral environment experienced by Cu atoms, we expect the Cu 3dx2−y2 and

3d3z2−r2 (i.e. the eg orbitals) to be the two highest occupied orbitals. Here, x,

y and z denote the local crystallographic axes: x and y point from the Cu site

towards ligands and z is perpendicular to them. The three t2g orbitals should lie

lower in energy [74].

This is consistent with what we observe in LDA results. In the DOS, there is a

narrow isolated region of bands around the Fermi level (from eg orbitals) – from
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the band structure we can count that it consists of 8 bands (2 bands per Cu atom)

as expected. Because the environment of a Cu2+ ion is elongated in the z-direction,

crystal field theory allows us to assign Cu2+ dx2−y2 orbital character to the upper

4 bands. Since these are the bands that contain the unpaired electrons, they are

the most relevant for the purposes of understanding magnetism in Cu(OH)Cl.

The next set of 4 bands, based on Cu2+ d3z2−r2 orbitals, occupy a nearly separate

energy window than the dx2−y2 bands. From all that we conclude that the unpaired

electron on each Cu site should be in an orbital resembling 3dx2−y2 .

The next collection of bands lie at much lower energies, between -2 and -1.2 eV, and

correspond to the three Cu t2g orbitals. Going even further, we find the oxygen

2p and chlorine 3p states. All these bands have little to do with the magnetic

properties displayed by Cu(OH)Cl.

5.1.2 Wannier function fit of LDA band structure

The LDA band structure plot in Figure 5.2 consists of two almost non-overlapping

groups of 4 bands. As discussed before, the higher group originates from the

Cu 3dx2−y2 orbitals, with x- and y-axes pointing towards neighbouring O and Cl

atoms, and contains one band for each Cu atom in the unit cell. As our first

attempt to take correlation effects into account, we mapped the band structure

on a tight-binding model by fitting the band structure with Wannier functions.

Even though the Cu2+ dx2−y2 were situated in a nearly separate energy window, we

fitted the whole set of 8 bands for better precision. This meant using two Wannier

functions per Cu atom, one based on the 3dx2−y2 (visualised in Figure 5.3) and

the other on the 3d3z2−r2 orbital.

The fitting process resulted in hopping parameters between Wannier functions,

including those that correspond to a pair of orbitals on different Cu sites. To pro-

ceed and obtain estimates for exchange couplings, the tight-binding results need

to be mapped on a Hubbard model. In that framework, however, only a single

orbital per site should be taken into consideration, therefore only the hopping
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Figure 5.3: Visualisation of the Wannier function based on the Cu2+ dx2−y2
orbital. The nearest Cu sites are included as well, together with the strongest

interlayer exchange couplings obtained by fitting the band structure.

parameters between 3dx2−y2-based Wannier functions were used to calculate the

couplings. This simplification was justified since the fitted values for hoppings

between Wannier functions with differing orbital characters were small – a conse-

quence of 3dx2−y2 and 3d3z2−r2 bands lying at different energies.

The main hopping parameters and exchange coupling values obtained by this

method are listed in Table 5.1, together with relevant distances and angles between

Cu sites. Three of the important couplings lie within the layers of Cu(OH)Cl (J ,

J ′1, J ′2) and one is between atoms from different layers (Jint). We neglected the

rest of the in-plane couplings as they were at least an order of magnitude smaller

than the in-plane ones listed in Table 5.1 and thus do not have a significant impact

on the magnetic properties of Cu(OH)Cl. For the same reason, only the largest

interlayer coupling (Jint) was included in the model.

5.1.3 DFT+U results

The method of fitting LDA band structure is good for determining which ex-

change couplings are large enough to matter for the microscopic magnetic model.

However, since only the antiferromagnetic contributions to couplings were esti-

mated this way, true values are usually lower due to ferromagnetic interactions.

35



Table 5.1: The list of main ab-initio exchange couplings from LDA band
structure fit and DFT+U calculations. Each coupling is characterised by the
distance between Cu sites and the Cu-O-Cu angle between the bonds along
which the Cu sites are connected. The couplings are visualised on the crystal

structure in Figures 5.4 and 5.5.

Cu-Cu Cu-O-Cu LDA t LDA GGA+U
distance (Å) angle (meV) JAFM (K) J (K)

J 3.03 98.8◦ 168 291 52

J ′1 3.29 109.5◦ 119 146 59

J ′2 3.36 114.0◦ 122 154 64

Jint 8.06 68 48 21

This means that the results so far only indicate the order of magnitude of vari-

ous couplings. To obtain better quantitative estimates, we carried out GGA+U

calculations.

As explained in Section 4.1.2, a precise value that should be used for the on-site

Coulomb repulsion parameter Ud is never known a priori. For a new compound,

a range of Ud values has to be tested, and exchange couplings calculated each

time. In case of Cu(OH)Cl, the GGA+U results obtained by varying Ud were

all qualitatively reasonable and in agreement with one another. The final value,

Ud = 9.5 eV was selected because it reproduced the θ-temperature θ = 80 K

determined from experimental data in section 3.3.1.

The final estimates of GGA+U couplings with Ud = 9.5 eV are listed in Table 5.1.

When we compare these values with the ones obtained by fitting the LDA band

structure, we see that they differ by ∼ 250 K or ∼ 100 K for J and J ′, respectively.

This difference comes from ferromagnetic contributions to exchange couplings that

were taken into account in DFT+U but had been neglected by LDA.
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5.1.4 Ab-initio microscopic magnetic model for Cu(OH)Cl

From LDA band structure fitting and DFT+U calculations, we have ascertained

that there are three important exchange couplings of similar magnitude within

a Cu(OH)Cl layer, plus a three times weaker coupling between the layers. The

system is therefore quasi-two-dimensional, but the interlayer coupling is not weak

enough to be completely neglected. These four couplings constitute our first micro-

scopic magnetic model of Cu(OHC)Cl and are visualised on the crystal structure

in Figures 5.4 and 5.5.
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Figure 5.4: a) Significant exchange couplings within a layer of Cu(OH)Cl, as
determined by LDA and DFT+U calculations. b) For comparison, the corre-

sponding fragment of the Shastry-Sutherland lattice.
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Figure 5.5: The interlayer exchange coupling Jint.

As can be seen in Figure 5.4, the exchange couplings within a layer form a Shastry-

Sutherland lattice, confirming the expectation based on the crystal structure. The
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antiferromagnetic intradimer coupling (J) is frustrated by the two antiferromag-

netic interdimer couplings (J ′1 and J ′2) that pass through the neighbouring Cu site

and have the opposite effect on the magnetic moments of the dimer. Properties of

the spin-1/2 antiferromagnetic Shastry-Sutherland lattice have been thoroughly

studied (see Section 3.2). However, most studies have focused on models where

couplings J ′1 and J ′2 are equal, but from ab-initio results it is clear that this is not

necessarily the case in Cu(OH)Cl.

Additionally, we have a sizeable interlayer coupling, which could create a notice-

able difference between the magnetic properties of Cu(OH)Cl and simple Shastry-

Sutherland lattice-based model systems. When the precise arrangement of inter-

layer couplings is investigated, it turns out that they are not frustrated and thus

should simply assist magnetic ordering (as was explained in Section 2.2) instead of

giving rise to other, more complicated effects. Another argument that diminishes

the importance of interlayer couplings is that there is only a single Jint per Cu

site. In most models, interlayer couplings link each magnetic site with two others,

one in the previous and one in the following layer, so we can say that the effective

interlayer coupling in our model is only half of Jint.

Despite the aforementioned shortcomings, the basic Shastry-Sutherland model

bears many similarities with our ab-initio results and thus forms a good start-

ing point for further analysis.

5.2 Model simulations

Having constructed a microscopic magnetic model, we would like to simulate the

thermodynamic properties of Cu(OH)Cl based on that. Fitting the simulation

results to experimental data would then allow us to determine model parame-

ters (exchange couplings) with higher accuracy. The problem with the values of

couplings obtained from ab-initio calculations is that there is a great deal of ap-

proximation involved and they might not correspond to reality precisely – fitting

experimental results with our model allows us to do better.
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Which thermodynamic properties can be used for fitting? In Section 3.3, exper-

imental curves of magnetic susceptibility, specific heat and magnetisation were

described. A limited amount of information was extracted from the magnetisation

isotherm, but fitting a nearly featureless straight line would not give us the values

of four exchange couplings. Specific heat data cannot be used either, because it is a

superposition of contributions from several different mechanisms. The information

about exchange couplings is carried in the magnetic heat capacity curve, which is

completely overpowered by the phonon contribution at temperatures higher than

10-20 K. On the other hand, we are hindered from using the low-temperature

part by the fact that simulation techniques tend to break down at temperatures

that go much below the magnitudes of exchange couplings. All this leaves only

the magnetic susceptibility curve as suitable for fitting – it has got interesting

features and can be simulated reasonably well within the temperature range of

our experimental results.

The biggest drawback of this whole approach is that only a small number of

parameters can be reliably determined from fitting the experiment. There are

four independent exchange couplings in the ab-inito model for Cu(OH)Cl – this

is too much and would lead to overfitting, especially since only the magnetic

susceptibility curve can be used. Therefore before we can fit the experimental data

and extract values for exchange couplings, our model needs to be simplified. Two

sets of simulations were carried out to assess the suitability of simplifications: exact

diagonalisation of the model Hamiltonian and high temperature series expansions

of magnetic susceptibility.

5.2.1 The difference between J ′1 and J ′2

The first plausible alteration towards getting a simpler microscopic magnetic model

is taking J ′1 = J ′2. Not only would it decrease the number of fitting parameters,

but it would allow us to access the wealth of previous theoretical results about the

conventional Shastry-Sutherland model. According to our ab-initio results (Ta-

ble 5.1), this would be quite a small approximation: the difference between the
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values estimated for J ′1 and J ′2 was under 10%. Nevertheless, it is conceivable that

even this small difference can have a noticeable effect to physical properties of the

system – especially due to the delicate nature of phenomena that arise from strong

geometrical frustration. To establish whether this is the case or not, we investi-

gated the effects of this approximation with the method of exact diagonalisation.

When the Heisenberg model Hamiltonian corresponding to a lattice of exchange

couplings is diagonalised, its energy spectrum is obtained. The thermodynamic

properties of the model then follow straightforwardly. By varying the values of

J ′1 and J ′2 and applying this method to each model, one can investigate the effect

that exchange couplings have on the magnetic susceptibility curve. Initially, we

imposed the restriction J ′1 = J ′2 = J ′ and varied the average interdimer coupling

J ′ to see its effect on magnetic susceptibility (Figure 5.6). Alternatively, we fixed

the average of J ′1 = J ′2 at J ′ = 0.75J and varied J ′1 and J ′2 (Figure 5.7).
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Figure 5.6: Exact diagonalisation simulations of magnetic susceptibility: the
effect of varying the average J ′ = J ′1 = J ′2, reported via x = J ′/J .

As can be seen from the results, the effect of having a 14% difference between

J ′1 and J ′2 is negligible, whereas changing the average interdimer coupling by the

same fraction makes a pronounced difference to the magnitude and position of

the susceptibility maximum. It is also clear that in both cases, the effect on the
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Figure 5.7: Exact diagonalisation simulations of magnetic susceptibility: the
effect of having different J ′1 and J ′2. The relative difference (J ′1 − J ′2)/J ′1 was

varied while keeping the average constant, (J ′1 + J ′2)/2J = 0.75.

magnetic susceptibility decreases upon moving to higher temperatures. However,

the curves converge much more rapidly in the case when J ′1 6= J ′2 than when

we vary a single J ′ value. This is very important for our purposes, because we

will be fitting mostly the high-temperature region of the experimental magnetic

susceptibility curve. Therefore according to the results of exact diagonalisation,

the average of J ′1 and J ′2 plays a much greater role in the magnetic susceptibility

curve than their difference – we can safely ignore the fact that there are two

different interdimer couplings and use just a single J ′.

5.2.2 The effect of interlayer couplings

Even after making the approximation that J ′1 = J ′2, there are still three indepen-

dent parameters left in our microscopic magnetic model: the intradimer coupling

J , the interdimer coupling J ′ and the interlayer coupling Jint. The first two of these

are inherent to the Shastry-Sutherland model and thus also form a key part of our

microscopic model. However, because the interlayer couplings are not frustrated

and only link each site with one neighbouring layer (see Section 5.1.4), one might
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hope that the magnetic susceptibility curve depends only weakly on the value of

Jint. On the one hand, this would mean that it is difficult to reliably determine

the strength of the interlayer coupling, but on the other hand it might allow us to

refrain from including Jint as an independent fitting parameter.

Based on ab-initio simulation results, we expect Jint to be roughly by a factor of two

weaker than J ′. Therefore as a first approximation, we can take Jint = 0.5J ′ and

then investigate how much the precise value of Jint affects the susceptibility curve

and the fitted values of exchange couplings. For that purpose, high temperature

series expansions of magnetic susceptibility were calculated for various values of

Jint. To simplify the process of finding the HTSEs, all couplings within a layer

were taken to be equal, J = J ′.

The obtained dependence of the fitted value of J ′ from the ratio Jint/J
′ (Table 5.2)

was very weak, under ±2% for reasonable values of Jint/J
′. These results prove

that the effect of the interlayer coupling on the susceptibility curve is small and

justify fixing the ratio Jint/J
′ to its DFT estimate Jint = 0.5J ′. Even if the true

value of Jint is slightly different, our approximation should remain reasonable since

the physics of the system is dominated by the strongly frustrated couplings within

layers of Cu(OH)Cl.

Table 5.2: Dependence of the fitted value of J = J ′ on the ratio Jint/J
′. Since

the interlayer coupling influences the fitted J ′ very weakly, we can set its value
at Jint = 0.50J ′.

Jint/J
′ Fitted J ′ (K)

0.40 60.9

0.45 60.6

0.50 60.2

0.55 59.8

0.60 59.4
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5.3 Microscopic magnetic model for Cu(OH)Cl

After making simplifications and establishing the validity of our approximations, it

is possible to fit the experimental magnetic susceptibility data and obtain estimates

of model parameters. This is best done using the HTSE curves, because they

include the effect of interlayer couplings. In addition to that, it is informative to

compare the susceptibility and magnetisation data with ED curves to verify the

fitting results.

To finally obtain estimates for the values of J and J ′, HTSEs of magnetic suscepti-

bility were calculated for various values of J ′/J = 0.60 . . . 0.80 with Jint/J
′ fixed to

0.5. The experimental susceptibility curve was fitted with each of these simulated

functions, so that for each ratio J ′/J estimates of all exchange couplings were

obtained. To determine the best set of model parameters, the fits were compared

with one another according to the sum of residuals squared (SRS) of data points.

There is a small problem with this approach, though. Since HTSEs are inherently

designed to work at high temperatures, experimental data can only be fitted down

to some temperature Tmin. On the one hand, it is beneficial to use a very low

value of Tmin to include many data points and take into account the behaviour of

the system as fully as possible. On the other hand, if the fitting range contains

points for which the HTSE prediction is already inadequate, the resulting values

of exchange couplings become inaccurate.

To ensure the validity of our results, we carried out the process of fitting suscep-

tibility data with several HTSEs for many different values of Tmin. For each Tmin,

the SRS values of J ′/J fits were plotted and analysed - the Tmin = 60 K graph

is given as an example in Figure 5.8. In all cases, we found that SRS values had

a clear minimum. However, since our HTSEs were performed only at 0.05 inter-

vals of J ′/J , determining the position of the minimum with better precision than

±0.025 required more effort than just selecting the lowest-lying point. The three

data points with lowest SRS values were fitted with a parabola and the position of
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the parabola’s minimum was calculated from its equation – this formed the best

estimate of J ′/J for a given Tmin.
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Figure 5.8: The sum of residuals squared (SRS) values of Tmin = 60 K HTSE
fits with different J ′/J values. Position of the minimum was refined by fitting

the three lowest-lying points with a parabola.

Best estimates of J ′/J for various values of Tmin are plotted in Figure 5.9. From

this graph it is clear that the fits give consistent results down to Tmin = 100K,

after which the fitting range extends beyond the temperature region where HTSEs

converge properly. The stable best estimate above Tmin = 100 K, J ′/J = 0.75 was

extracted from the graph as our expected ratio of inter- and intradimer couplings.

The final values for exchange couplings were determined by fitting the experimen-

tal magnetic susceptibility data with the J ′/J = 0.75 HTSE. The results were

fairly robust, consistently giving J = 80K above Tmin = 80K. According to the

relations between J , J ′ and Jint, this leads to the final exchange coupling values

J = 80K, J ′ = 60K and Jint = 30K and thus concludes the search for the micro-

scopic magnetic model for Cu(OH)Cl.

A similar fitting process was carried out with susceptibility curves obtained from

ED simulations. The only difference from the procedure described for HTSE fitting
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Figure 5.9: Best estimates of J ′/J for various fitting cut-off temperatures Tmin.
HTSEs are able to fit the data well down to 100 K, resulting in J ′/J = 0.75.

came from the fact that simulated ED curves were available at much finer intervals,

so that it was possible to directly obtain the J ′/J with the lowest SRS value for

each Tmin. In this case, the best estimate of J ′/J stabilised already at Tmin = 90 K

and resulted in J ′/J = 0.73. This is consistent with the value J ′/J = 0.75 obtained

in HTSE fitting, even surprisingly so. Since our exact diagonalisation simulations

contained only 16 Cu sites and completely neglected the interlayer coupling, one

could have expected the two results to be more different than that. Thus we can

conclude that the values obtained for J ′/J = 0.75 and exchange couplings are

quite robust and precise.

Figure 5.10 demonstrates the final HTSE and ED fits. The J ′/J = 0.75 HTSE

curve was fitted down to Tmin = 100 K and resulted in parameters J = 79.7 K,

g = 2.184, χ0 = −0.000066 emu/mol.For the ED curve, the corresponding numbers

are J ′/J = 0.73, Tmin = 90 K,J = 85.2 K, g = 2.167, χ0 = −0.000058 emu/mol.

Finally, our microscopic magnetic model and its parameters can also be verified by

comparing the experimental magnetisation isotherm with its counterpart obtained

by diagonalising the Hamiltonian (either by exact or Lanczos diagonalisation).

There are two ways how our model parameters results influence the predicted
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Figure 5.10: Final HTSE and ED fits of magnetic susceptibility.

magnetisation isotherm. The Shastry-Sutherland model Hamiltonian with J ′/J =

0.75 that is used for diagonalisation determines the qualitative behaviour of the

magnetisation curve. Secondly, the g-factor and J-value from the final HTSE fit

set scales of H and M .

Figure 5.11 displays the simulated magnetisation results together with the ex-

perimental curve. Due to the finite sizes of lattices used for diagonalisation (16

sites for ED and 24 for Lanczos), results obtained from simulations look like series

of jumps rather than smooth functions. As discussed in Section 4.2.1, the other

consequence of finite size is that the accuracy of describing strongly frustrated sys-

tems like Cu(OH)Cl suffers, meaning that the simulated magnetisation curve may

change by a fair amount when system size is increased. We can see that within

the accuracy of our simulations, diagonalisation results are generally in agreement

with the experimental curve.
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Figure 5.11: Magnetisation isotherms of Cu(OH)Cl: experimental (red curve),
exact diagonalisation with 16 sites (blue) and Lanczos diagonalisation with 24
sites (green). The saturation magnetisation is Msat = gµB/2 (per Cu atom, as
usual). HTSE fitting results g = 2.184 and J = 80 K were used to scale the

experimental magnetisation curve.
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6. Discussion

Even though the Shastry-Sutherland lattice is geometrically frustrated, the ques-

tion still remains whether frustration plays a significant part in the physics of

Cu(OH)Cl. This can be achieved by comparing our model and its parameters

with known results about a very similar non-frustrated system, the antiferro-

magnetic spin-1
2

Heisenberg model on the stacked square lattice. In the lat-

ter, sites are arranged in layers of square lattice with couplings Ja, addition-

ally each site is coupled to the previous and next layers via Jb. Since there

is only one interlayer coupling per site in our model for Cu(OH)Cl, we assign

Jb = Jint/2 = 3J/16. The magnitude of intralayer couplings can be charac-

terised by Ja = (4J ′ + J)/4 = (4 · 0.75J + J)/4 = J . According to previous

theoretical results [26], a stacked square lattice with these values of Ja and Jb

would be expected to undergo long-range ordering at TN/Ja ≈ 0.5, but experi-

mental results for Cu(OH)Cl put the phase transition to a significantly lower value,

TN/J = (11 K)/(80 K) ≈ 0.14. This serious drop in the Néel ordering temperature

is a clear indication of the importance of frustration in Cu(OH)Cl.

The value J ′/J = 0.75 that we determined for Cu(OH)Cl is very close to the

predicted point of quantum phase transition J ′/J = 0.765(15) of the Shastry-

Sutherland model (Section 3.2). This makes Cu(OH)Cl a very interesting com-

pound as it potentially enables us to learn something about the phase diagram.

However, given that two simplifications were made to describe Cu(OH)Cl by a

Shastry-Sutherland model, the applicability of theoretical results obtained for the

basic Shastry-Sutherland model to Cu(OH)Cl needs careful consideration.
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The first simplification was equating the two interdimer couplings J ′1 and J ′2. Ac-

cording to DFT calculations, the difference between J ′1 and J ′2 is quite small, of

the order of 10%. In Section 5.2.1, it was shown that the effect of that on magnetic

susceptibility curves was small, so this difference will likely not take Cu(OH)Cl to a

different region of the phase diagram. This argument is supported by a theoretical

study concerning the spin-1
2

Shastry-Sutherland lattice of (CuCl)LaNb2O7 that

has different (although ferromagnetic) interdimer couplings [75]. In this paper,

phase diagrams of the “distorted” Shastry-Sutherland model were calculated by

three methods – none of these predict that introducing a 10% difference between

interdimer couplings could lead to a new phase.

A more important deviation from the basic two-dimensional Shastry-Sutherland

model is the sizeable interlayer coupling Jint. A careful analysis of the system

shows that interlayer couplings are not frustrated, meaning that they will fa-

cilitate long-range ordering of magnetic moments. This suggests that previous

theoretical analyses of the Shastry-Sutherland model, in particular of the depen-

dence of quantum phases on the ratio J ′/J , cannot be straightforwardly applied

to Cu(OH)Cl with high precision. Since the presence of Jint inclines the system

towards ordering, transition to the Néel phase should occur at a lower J ′/J value

than in the classical Shastry-Sutherland system. In principle, an interlayer cou-

pling of high enough magnitude might even be able to destroy the intermediate

plaquette phase. The question of what exactly happens with the phases would

require a thorough investigation on its own, but some insight can be gained from

previous results on similar systems.

The influence of the interlayer coupling on magnetic ordering has been theoretically

investigated for the case of the spin-1
2
J1-J2 antiferromagnetic Heisenberg model

on the stacked square lattice [76]. Each layer of this 3D model consists of a square

lattice of couplings J1, to which next-nearest-neighbour couplings J2 have been

added along the diagonals of the squares. Additionally, each site is coupled to

the previous and the next layer by Jint. The presence of diagonal J2 couplings

makes the model very strongly frustrated, which allows three phases to emerge.

In case of Jint = 0, there are two long-range ordered phases at small and large J2
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and between these lies an intermediate quantum paramagnetic phase without long-

range order. It was discovered that the parameter region of the intermediate phase

narrows when Jint is increased, disappearing completely at Jint ∼ (0.2 − 0.3)J1.

As the effective strength of interlayer couplings in our model for Cu(OH)Cl is

about 0.25J ′ ≈ 0.20J , we can expect by analogy that by that value of Jint the

intermediate phase of the Shastry-Sutherland lattice is either strongly suppressed

or has disappeared at all.

Taking these considerations into account, we expect that Cu(OH)Cl (with J ′/J =

0.75) lies in the Néel phase part of the phase diagram. Even though the tran-

sition between the Néel phase and the plaquette phase is predicted to occur at

J ′/J = 0.765(15) for the classical Shastry-Sutherland model, the interlayer cou-

pling present in Cu(OH)Cl should lower this boundary. In addition, we know

from experiment that Cu(OH)Cl undergoes long-range ordering at 11 K, which is

consistent with it being in the Néel phase part of the phase diagram.

If Cu(OH)Cl really is in the Néel phase part of the phase diagram, then there

should be no plateaux in its magnetic susceptibility curve. Our current experi-

mental results confirm that claim up to 59 T, but it is still possible that plateaux

exist at higher values of magnetic field. This is what our diagonalisation results

suggest – in Figure 5.11, there seems to be a plateau at half of maximum mag-

netisation. However, we have to keep in mind that these simulations have been

carried out for a 2D model where interlayer couplings have been neglected. There-

fore magnetisation simulations do not change our prediction – if Cu(OH)Cl truly

is in the Néel phase part of the phase diagram, no plateaux in magnetic suscep-

tibility should be observed even if it were measured up to higher magnetic fields.

This can be verified by carrying out ultra-high-field magnetisation measurements.

Another possible source of discrepancies between our microscopic model and the

reality in Cu(OH)Cl can be the fact that we used a simple Heisenberg model

and completely neglected Dzyaloshinskii-Moriya (DM) interactions. Luckily, it

can be roughly estimated how much they can affect our results without turning

to detailed calculations. Firstly, as was discussed in Section 2.1, the strength
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of Dzyaloshinskii-Moriya interactions is typically 1-2 orders of magnitude smaller

than the superexchange interactions that give rise to J , J ′ and Jint. Secondly, since

there can be no DM interaction between two sites if there is inversion symmetry

about the centre of the line connecting the two ions, we can check whether DM

interactions can have an effect at all. From the structure of Cu(OH)Cl it can be

seen that DM interactions can be present in the J ′ coupling, but not in the J

or Jint couplings. Taking this into account, we do not expect DM interactions to

affect our microscopic magnetic model significantly.

Having established the validity of our microscopic magnetic model of Cu(OH)Cl,

we can now turn our attention to comparing Cu(OH)Cl with similar systems. One

useful reference compound is SrCu2(BO3)2, as many of its properties have been well

studied. In addition to that, it is worth considering Cu(OH)F – a compound that

contains copper plaquette dimers connected with one another along the corners in

a very similar fashion as in Cu(OH)Cl [77]. Its synthesis is more difficult, though,

so there is no data about its magnetic properties. However, even just based on

the structure, we expect that there are sizeable Cu-Cu exchange couplings along

oxygen bridges (but there can be additional important couplings, too).

A detailed analysis of Cu(OH)F would be outside the scope of this work, but

the main structural characteristics of expected couplings are given in Table 6.1.

These can be compared with the corresponding parameters of Cu(OH)Cl and

SrCu2(BO3)2. It should be noted that in SrCu2(BO3)2, the copper atoms partici-

pating in the J ′ coupling are not separated just by an oxygen atom, which is why

the Cu-O-Cu angle is not included for that case.

It is evident from Table 6.1 that the structures of Cu(OH)Cl and Cu(OH)F are

very similar. For both compounds, Cu-Cu distances and angles increase in the or-

der J → J ′1 → J ′2, and the value of each parameter for Cu(OH)Cl is greater than

that of the Cu(OH)F equivalent. Whereas having Cu sites closer together may not

have any direct effect on the microscopic magnetic model because the intradimer

interaction is of superexchange type, smaller Cu-O-Cu angles are expected to have

a clear impact. It weakens the antiferromagnetic superexchange mechanism and
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Table 6.1: Structural parameters of (a) Cu(OH)F [77], (b) Cu(OH)Cl [27]
and (c) SrCu2(BO3)2 [78], together with the values of exchange couplings for

the latter two.

Cu-Cu distance (Å) Cu-O-Cu angle Coupling value (K)

(a) (b) (c) (a) (b) (c) (b) (c) [8]

J 2.98 3.03 2.91 97.8◦ 98.8◦ 98.5◦ 80 85

J ′1 3.11 3.29 5.13 103.6◦ 109.5◦ N/A 60 54

J ′2 3.19 3.36 5.13 107.4◦ 114.0◦ N/A 60 54

favours Hund’s coupling on ligand sites, thus decreasing the values of exchange

couplings by making them more ferromagnetic. Magnitudes of these changes are

difficult to predict, but we can get a rough idea by looking at the Cu(OH)Cl

results. There we saw the value of J drop from ∼ 300 K to ∼ 50 K when the

ferromagnetic contribution was taken into account (Table 5.1). Similarly, J ′ de-

creased from ∼ 150 K to ∼ 60 K. We see that both ferro- and antiferromagnetic

contributions are sizeable and a shift towards favouring ferromagnetic interactions

in Cu(OH)F can really make a difference to exchange couplings, perhaps even al-

low the ferromagnetic component to dominate. Therefore further investigation of

Cu(OH)F would be necessary to obtain even qualitative estimates of its exchange

couplings.

In addition to looking for new compounds, there is another way how the phase

diagram of the Shastry-Sutherland model can be explored. Applying pressure on a

crystal alters its lattice parameters and coordinates of atoms and thus can change

the exchange couplings between magnetic sites. Of course, at some pressure the

compound may undergo a structural phase transition and require a completely

different model for the description of its magnetic properties, but before that

happens it is often possible to see the parameters of the original model varied.

Using exactly this approach, it has been proposed that in SrCu2(BO3)2 the J ′/J

ratio increases with pressure – at P = 2.0 GPa, the system may enter the plaquette

phase of the Shastry-Sutherland model [79, 80].
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In layered compounds, the effect of pressure is usually most noticeable along the

direction pointing out of the plane of layers and depends very much on how exactly

the layers are connected. In SrCu2(BO3)2, Cu-containing layers are separated only

by planes of Sr atoms. This is very different from Cu(OH)Cl, where layers are tied

together by hydrogen bonds between H and Cl atoms. For that reason, it would

be interesting to look into the effect of pressure on Cu(OH)Cl.

Finally, one can alter the exchange couplings by substituting some atoms for an-

other element. This is not as elegant an approach as varying pressure, because

doping disrupts the formation of long-range order by introducing disorder to the

system. Nevertheless, it has been done for SrCu2(BO3)2 with various results. Re-

placing some Sr with Al, La, Na or Y led to strong suppression of the spin gap [81].

On the other hand, the most notable effect of diluting the system by substituting

some of the Cu for Mg [82] was the introduction of new excitations into the spin

gap of SrCu2(BO3)2. A similar approach in Cu(OH)Cl might be carried out by

replacing Cl with F or Br (the F case was already discussed) and could potentially

lead to interesting results.
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7. Summary and conclusions

Cu(OH)Cl contains Cu2+ ions with the 3d9 outer shell configuration. The unpaired

electrons are well localised on Cu2+ ions, thus giving rise to spin S = 1
2

magnetic

moments and making the compound paramagnetic. However, being localised does

not make the magnetic moments independent, electrons influence one another by

strong correlation effects. These effects are displayed in magnetic properties of the

material, leaving an imprint on experimentally measurable thermodynamic quan-

tities like magnetic susceptibility, magnetisation and specific heat. By describing

the system as a Heisenberg model with pairwise exchange couplings Jij between

magnetic sites, its magnetic properties can be explained.

The microscopic magnetic model for Cu(OH)Cl was determined by ab-initio den-

sity functional theory calculations, either by constructing a Hubbard model on top

of LDA band structure or by invoking DFT+U . Model parameters were refined

by fitting the experimental curve of magnetic susceptibility with the help of high

temperature series expansions. Correctness of the model was verified by diago-

nalising the Hamiltonian to simulate thermodynamic properties, and by analysing

experimental curves of magnetisation and specific heat.

We found that the magnetic properties of Cu(OH)Cl can be well described by a

quasi-two-dimensional spin model. Layers of Cu2+ ions are arranged in a distorted

Shastry-Sutherland lattice (a square lattice with some extra diagonal bonds that

introduce frustration to the model) and are connected by moderate interlayer ex-

change couplings (Jint). In case of Cu(OH)Cl, the extra diagonal bonds arise from

nearest-neighbour couplings J within dimers of CuO3Cl plaquettes, whereas the

main square lattice is composed of next-nearest-neighbour couplings J ′ between
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Cu2+ ions of different dimers. Each Cu2+ ion also has a single interlayer coupling

Jint connecting it with either the previous or the next layer.

According to our simulations and fitting results, the values of exchange couplings

are J = 80 K, J ′ = 60 K and Jint = 30 K, with the ratio J ′/J = 0.75. This puts

Cu(OH)Cl near the most interesting parameter region of the Shastry-Sutherland

model, i.e. the part where quantum phase transitions occur. Based on latest sim-

ulation results in the literature [43], if the ratio J ′/J is increased above 0.675, the

ground state of the Shastry-Sutherland model changes from a product of dimer

singlets to a plaquette state. The latter in turn is replaced by a Néel-type antifer-

romagnetic ground state when J ′/J exceeds 0.765.

It must be noted that the theoretical results that have been obtained about the

quantum phases of the Shastry-Sutherland model are not precisely applicable to

Cu(OH)Cl. The first reason comes from the moderately strong interlayer coupling

that favours long-range ordering and decreases the parameter range of the interme-

diate plaquette phase. This is why we expect Cu(OH)Cl to be in the Néel part of

the phase diagram, even though the ratio J ′/J = 0.75 we established for the com-

pound is below the second quantum phase transition of the 2D Shastry-Sutherland

model, J ′/J = 0.765. That conclusion is supported by the λ-type anomaly at 11 K

in the experimental specific heat curve, indicating a phase transition to a long-

range ordered state. The second deviation from the original Shastry-Sutherland

model is that in Cu(OH)Cl, the two interdimer couplings J ′1 and J ′2 are not the

same by symmetry. However, our ab-initio results suggest that the difference is

small, and exact diagonalisation simulations allowed us to conclude that physical

properties of the compound are very little affected by that.

Taking all these considerations into account, we found that the Shastry-Sutherland

model with interlayer couplings gives a good description of the magnetic properties

of Cu(OH)Cl. The first real-world example, SrCu2(BO3)2, received much atten-

tion because of the plateaux observed in its magnetisation curve [24]. After that,

even though there have been examples of compounds with exchange couplings

arranged in the Shastry-Sutherland lattice, in most cases they have only weakly
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resembled the original S = 1
2

antiferromagnetic Shastry-Sutherland model with

various degrees of similarity. In contrast, Cu(OH)Cl not only follows closely the

Shastry-Sutherland model, but is also the first example of a system in the Néel

part of the phase diagram. As such a model compound, it presents a good oppor-

tunity for additional studies to further elucidate the nature of the quantum phases

in Shastry-Sutherland model.
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Cu(OH)Cl mikroskoopiline magnetiline mudel

Taavi Pungas

Kokkuvõte

Madaladimensioonilise magnetismi uurimine on osutunud väga viljakaks valdkon-

naks, eriti Cu2+-ühendites. On oletatud, et kõrgtemperatuurne ülijuhtivus kupraa-

tides on seotud nendes leiduvate CuO2 tasandite spetsiifiliste magnetiliste oma-

dustega [2], samuti leidub mitmeid näiteid antiferromagnetilistest Cu2+- mater-

jalidest, milles magnetilised ergastused (magnonid) moodustavad Bose-Einsteini

kondensaadi [6]. Nende ja paljude teiste nähtuste uurimiseks ning magnetiliste

interaktsioonide aatomskaalal paremaks mõistmiseks tuleb kasuks ainete mikros-

koopiline magnetiline modelleerimine. Käesoleva töö eesmärgiks oli välja selgitada

Cu(OH)Cl mikroskoopiline magnetiline mudel, kasutades selleks tihedusfunktsio-

naaliteooria (DFT) arvutusi ja termodünaamiliste omaduste eksperimentaaland-

mete sobitamist simulatsioonitulemustega.

Cu(OH)Cl sisaldab Cu2+ ioone, mille väline elektronkiht on 3d9 konfiguratsiooni-

ga. Igal Cu2+ ioonil paikneb seetõttu üks paardumata elektron, mis teeb ioonist

spinn-1
2

magnetmomendi ja muudab aine paramagnetiliseks. Tugevate elektron-

korrelatsioonite tõttu ei ole magnetmomendid teineteisest sõltumatud. Sellise seos-

tatuse mõjusid saab eksperimentaalselt mõõta materjali füüsikalistes omadustes,

sealhulgas magnetilises läbitavuses, magnetisatsioonis ja erisoojuses. Neid omadusi

aitab mikroskoopiliselt seletada Heisenbergi mudel, milles Cu2+ ioonid interaktee-

ruvad omavahel paarikaupa magnetiliste sidestuste Jij kaudu.

Cu(OH)Cl mikroskoopiline magnetiline mudel määrati DFT arvutuste abil, ka-

sutades selleks esiteks arvutusliku tsoonistruktuuri sobitamist ja teiseks DFT+U

meetodeid. Parameetreid täpsustati eksperimentaalandmete abil, sobitades mag-

netilise läbitavuse kõverat kõrge temperatuuri rittaarendustega. Mudeli kehtivust

hinnati lisaks ka hamiltoniaani diagonaliseerimise teel termodünaamilisi omadusi

simuleerides, samuti magnetisatsiooni ja erisoojuse mõõtmistulemusi analüüsides.
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Töös leiti, et Cu(OH)Cl magnetilisi omadusi kirjeldab hästi kvaasi-kahedimensio-

naalne antiferromagnetiline spinnimudel. Cu2+ ioonid asuvad kihtidena Shastry-

Sutherlandi võres, s.t. ruutvõres (sidestustega J ′), millele lisanduvad mõned dia-

gonaalsed sidestused J . Iga Cu2+ iooni ühendab kas eelmise või järgmise tasandiga

mõõdukas kihtidevaheline sidestus Jint. Et diagonaalsete J-sidestuste mõju vastan-

dub ruutvõre J ′-interaktsioonidele, on mudel geomeetriliselt frustreeritud.

Simulatsioonide ja sobituste tulemusena leiti Cu(OH)Cl jaoks järgmised sides-

tuste väärtused: J = 80 K, J ′ = 60 K ja Jint = 30 K. Seejuures on sides-

tuste suhe J ′/J = 0.75 Shastry-Sutherlandi mudeli kõige huvitavama piirkonna

lähistel, kus toimuvad kvantfaasiüleminekud. Hiljutisimate simulatsioonitulemus-

te kohaselt muutub J ′/J suhet üle 0.675 suurendades Shastry-Sutherlandi mudeli

põhiolek singlettide korrutisest plakettseisundiks [43]. Viimane asendub omakorda

Néeli-tüüpi antiferromagnetilise põhiseisundiga, kui J ′/J väärtus ületab 0.765.

Et Cu(OH)Cl mikroskoopiline magnetiline mudel ei ole täiuslikult kahedimen-

sionaalne, vaid sisaldab ka kihtidevahelist sidestust Jint, ei saa tavalise Shastry-

Sutherlandi mudeli faaside kohta leitud tulemusi otse üle võtta. Jint peaks soo-

dustama magnetilist korrastust ja kitsendama plakettfaasi parameetripiirkonda.

Seetõttu asub Cu(OH)Cl tõenäoliselt siiski Néeli faasi piirkonnas, hoolimata J ′/J

väärtusest 0.75 < 0.765. Seda järeldust kinnitavad erisoojuse mõõtmistulemused,

millest nähtuv λ-tüüpi anomaalia 11 K juures on magnetilise korrastuse moodus-

tumise kindel tunnus.

Kõike eeltoodut arvesse võttes võime väita, et kihtidevaheliste sidestustega Shastry-

Sutherlandi mudel kirjeldab hästi Cu(OH)Cl magnetilisi omadusi. Kuigi pärast

esimese korraliku Shastry-Sutherlandi mudeliga materjali, SrCu2(BO3)2 avasta-

mist on veel seda tüüpi ühendeid leitud, on nad üsna nõrgalt algse spinn-1
2

an-

tiferromagnetilise Shastry-Sutherlandi mudeliga sarnanenud. Seevastu Cu(OH)Cl

ei ole mitte ainult hea näidis Shastry-Sutherlandi mudelist, vaid on lisaks ka esi-

mene aine faasidiagrammi Néeli faasi piirkonnas. Selle ühendi edasised uuringud

annaksid suurepärase võimaluse Shastry-Sutherlandi mudeli kvantfaaside olemuse

mõistmiseks.
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A. Coefficients of HTSEs

Here, the coefficients of high temperature series expansions of magnetic suscep-

tibility are listed the way they were calculated by J. Oitmaa. These coefficients

can be used to find the high-temperature part of the magnetic susceptibility curve

according to the formula

χ(T ) =
NAµ

2
Bg

2

kBT

10∑
n=0

cn

(
J

4T

)n
.

J ′ = 0.60J J ′ = 0.65J J ′ = 0.70J J ′ = 0.75J J ′ = 0.80J

Jint = 0.30J Jint = 0.325J Jint = 0.35J Jint = 0.375J Jint = 0.40J

c0 0.25 0.25 0.25 0.25 0.25

c1 -0.925000000736 -0.981249999172 -1.03749999920 -1.09375000000 -1.1499999994

c2 2.15749989298 2.45359344781 2.76437515637 3.08984375000 3.42999998166

c3 -3.66291660223 -4.50957659031 -5.46088561071 -6.52164713550 -7.69666672292

c4 6.53164241803 8.63842766534 11.1764349197 14.1944376612 17.7436002631

c5 -15.0523000554 -20.9209207376 -28.4327479793 -37.8905156349 -49.6293383637

c6 29.7043284128 44.1915413704 63.9201050904 90.2385070021 124.725489501

c7 -39.7936191263 -66.2064431267 -105.253142167 -161.303363403 -239.788569533

c8 63.9026605528 114.918452750 196.426419747 322.012615486 509.712847291

c9 -197.806429587 -351.123010180 -602.971155347 -1004.08395005 -1625.57209367

c10 400.247986378 762.308672326 1391.49198152 2447.29999260 4165.16153611
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