
U N I V E R S I T Y O F T A R T U
Faculty of Mathematics and Computer Science

Institute of Computer Science

Anton Litvinenko

Automatic Prediction of Source
Code Contribution Type

Master Thesis

Supervisors: Jaak Vilo, PhD
Ulrich Norbisrath, Dipl.-Inform.

TARTU 2007

Contents

Acknowledgements 4

Introduction 5

1 Software Development 8
1.1 Open Source Software . 8
1.2 Open Source Software Research 9
1.3 Versioning Systems . 10
1.4 Software Metrics . 12

2 Data Mining 15
2.1 Introduction . 15
2.2 Notation . 16
2.3 Prediction and Classi�cation 17
2.4 Random Forest Classi�er . 18

3 Methodology 20
3.1 Method Overview . 20
3.2 Method Detailed Description 21

4 A Case Study: Aranea Framework 28
4.1 Aranea Framework . 28
4.2 Toolkit . 29

4.2.1 Changelogic . 29
4.2.2 SourceKibitzer . 30
4.2.3 Weka . 32

4.3 Method Application . 32
4.4 Classi�cation Using Aggregated Modi�cations 37

2

4.5 Classi�cation Using Separate Modi�cations 39
4.6 Results Overview . 42

5 Related Work 45

Conclusions 49

Summary (in Estonian) 52

Bibliography 53

A Prediction Results for the Approach 1 59

B Prediction Results for the Approach 2 74

3

Acknowledgements

There are a lot of people whose help and contribution I would like to recog-
nise.

First of all, I am lucky enough to have two advisors: Dr. Jaak Vilo and
Ulrich Norbisrath. The existence of this thesis wouldn't be possible without
either of them. Jaak has guided me throughout the whole period of my master
studies. His energy and devotion moves mountains. It is impossible to resist
them, they are infectious. Ulrich's fresh ideas and constructive criticism have
led me during the most di�cult time of the studies � the last month before
the thesis submission.

Not a single achievement is possible without the support of the family
and friends. Darja has always been there for me with her support, patience
and empathy. Mark has been open to discussions of any ideas, troubles and
results. I can't imagine overcoming all obstacles without their help.

Nothing motivates more than the success of the friends. Darja, Liina, and
Dan, I want to thank you for the demonstration of how devotion and hard
working can lead to tremendous results. I wish you all a happy graduation!

I would like to mention Jevgeni Kabanov and Karel Kravik. Jevgeni
has provided me with the Changelogic database dumps characterising the
development of Aranea Framework. Karel has helped to �gure out how to
examine these dumps and what kind of information should I look for.

Finally, I would like to thank members of the BIIT group for their will-
ingness to help. Meelis, Pavlos, Hedi, Ilja and especially Konstantin thank
you for the help and criticism!

This Master's Thesis has been partially supported by the ETF grant
number 5722 and SourceKibitzer OÜ.

4

Introduction

The phenomenon of open source software is conquering the world. The num-
ber of open source software developers increases every month. Contributing
to open source projects is attractive for developers. It is a chance to learn
from their smart and talented colleagues. Users love open source software for
its community and chance to see what actually they are using. Commercial
companies start to be more favourable to open source solutions even when it
comes to performing their mission-critical activities and developing custom
software using open source libraries.

Unfortunately, it is rare for an open source software project to have a legal
entity behind it: self-selected volunteers perform crucial tasks like customer
support and defect �xing. Often this causes a problem for companies that
deploy open source software in their production environments: even though
the source code and infrastructure is open, it is di�cult to tell if software is
mature enough or its support and development won't be abandoned in the
near future. Today, the problem of evaluation of the open source project's
state is an important topic.

Let's consider a typical scenario of implementing a new feature in custom
software that will help us to surface the problem. For instance, a requirement
of implementing the data import from the Microsoft Excel spreadsheet in the
Java language. While one option is to implement the functionality all by our-
selves, the quicker way would be to use already existing libraries or products
that we could easily integrate into our software. Let's assume that we would
really like to use a library developed under the open source model and we
have found two libraries equally well satisfying our functional requirements:
Java Excel API1 and Jakarta POI2. Which one should we choose?

In order to choose, one has to review and compare both libraries from
1http://jexcelapi.sourceforge.net/
2http://jakarta.apache.org/poi/

5

di�erent perspectives. Lets consider some of them in detail:

maturity: Most open source software projects struggle to produce the �rst
stable release. If such release is not produced during the �rst 3�4 years
of the development then probability of the stable release reduces dra-
matically [SFT07]. Thus, it is really important to check how long a
library has been developed, what its current state is and if the commu-
nity has managed to perform a stable release. Otherwise usage of the
library might compromise stability or availability of the application.

community: The community built around the library should be active and
responsive. This way it is more likely that the library will continue
to evolve and the developer won't be left alone with her troubles. To
analyse how active the community is, one has to check:

• how quickly and how often help requests are answered on the
mailing lists and forums of the library

• how often answering party doesn't belong to the team of core
contributors

• what is the ratio of closed defects to the total number of defects
in the issue tracking system of the project.

documentation: Library usage should be extensively documented. FAQ-s,
references, guides and examples � all these should be easily accessible.
Lack of the diverse documentation will decrease development speed and
complicate software maintenance.

source code quality: Source code of the library should be covered with
commentaries, shouldn't contain unnecessarily complex components
and be easily extendable and maintainable.

The openness is the key to such data: issue tracking systems, source
code repositories, mailing lists, forums and wiki pages � all these are freely
accessible thanks to the nature of open source development. On the other
hand manual execution of such analysis would not only compromise the speed
of the development, but also require a lot of routine and uninteresting work
to be performed by the developer.

A much more rational and convenient approach would be to have all this
information already put together and automatically renewed. The developer

6

would only have to login to some environment and there she would be able
to compare various solutions from di�erent angles. There is a number of
initiatives that are already trying to provide similar services: SourceKib-
itzer [Soub], Ohloh [Ohl], Business Readiness Rating [Busa] and others.

This thesis tackles the problem of predicting the open source software
state and concentrates on a smaller part of this problem: automation of
prediction of the source code contribution type. By the word contribution
we refer to a collection of source code modi�cations grouped by the common
goal. For instance, a contribution might be a bug �x or the implementation
of some new functionality. Usually, the growth of the number of bug �xes is
a sign of an upcoming release. On the other hand the large number of new
functionality contributions indicates that software is being actively developed
and no stable release is planned in the near future. Thus, if one is able to
tell the type of each contribution then she could also tell the state of the
software.

The thesis is structured as follows: we start with an overview of software
development including open source software development, versioning systems
and software metrics. We then continue with an introduction to data mining
along with a description of the prediction algorithm used in the case study.
We propose a method to be used for prediction of the contribution type.
Afterwards we test our method on the historical data of Aranea Framework
and evaluate its accuracy. We continue with an overview of the studies and
initiatives related to our work. As the proposed method is far from being
complete, we conclude this work with the summary of results and directions
for further method improvements.

7

Chapter 1

Software Development

This chapter starts with a brief analysis of open source software development.
Then we continue with an introduction of the software development aspects
relevant to the method and case study described in the following chapters.

1.1 Open Source Software
It may seem that the title �Open Source� speaks for itself: it is something
for which source is widely available: for software � the source code, for
dishes � the recipe, or for architecture � the blueprints. However, the
availability of the source is not the only criterion. Many other aspects like
redistribution, derived work, and licences are also involved in the de�nition
of open source [Ini].

Let's consider the case of open source software. According to the de�ni-
tion [Ini], the licence of the open source software shall not restrict any party
from selling or giving away the software as a component of an aggregate soft-
ware distribution containing programs from several di�erent sources. The
licence shall not require a royalty or other fee for such.

In order to maintain the de�nition of the open source software, the spe-
cial corporation named Open Source Initiative (OSI) has been founded [Ope].
According to OSI, �open source� is a software development method that har-
nesses the power of distributed peer review and process transparency. The
promise of open source is better quality, higher reliability, more �exibility,
lower cost, and an end to predatory vendor lock-in.

8

1999 2000 2001 2002 2003 2004 2005 2006
0

250000

500000

750000

1000000

1250000

1500000

Year

N
um

be
r

of
 U

se
rs

Figure 1.1: Growth of the number of registered users at the popular open
source software hosting service � SourceForge.

The open source software development model is very popular among soft-
ware developers. For instance, the number of registered users at Source-
Forge [Soua], the most popular open source software hosting service, has
grown over 1.5M (Figure 1.1) [FLOa]. Developers are motivated to join and
actively participate in the development of open source software. According to
the study performed by Ghosh et al. the main drivers for both joining and
participation are similar: possibility to learn and develop new skills along
with sharing already existing knowledge and expertise [GGKR02].

1.2 Open Source Software Research
The success of open source software has attracted many researches to study
it. Initially, the main investigation topic was the popularity of open source
software development. Nowadays more and more studies are devoted to
see how open source projects evolve [RAGBH05, Wu06, RGBMA06], how
communities are organised [LFRGB04, XCM06, CWL+07], and why some
projects are more successful than the others [SFT07].

9

The number of researches couldn't be that large without support by gov-
ernments and corporations. We have found around 20 di�erent scienti�c
groups, projects and programmes studying open source software. To name a
few:

• FLOSSWorld [FLOb]

• QUALOSS [QUAb]

• QualiPSo [Quaa]

• GSyC/LibreSoft Research Group [GSy]

• SQO-OSS [SQO]

On the other hand all these groups and studies are stimulated by the
large number of open source software development projects. Throughout the
development a lot code and other accompanying information, like messages
in mailing lists, posts in forums, feature requests, and defect descriptions in
issue tracking systems, is produced. If we consider the fact that for a typical
software engineering researcher it is extremely di�cult to get access to the
development data of closed commercial applications, then such a diverse data
produced by open source projects seems like a natural choice for the empirical
research.

1.3 Versioning Systems
Implementation of a particular feature or �x of a defect involves inspection
and modi�cation of several �les at a time. At the same time other developers
should be able to work on their tasks, perhaps modifying the same �les. And
a tester would want to get the latest version of the software to run her tests
on it. In order to overcome these and many other di�culties, caused by
the distributed software development, special tools are used. Often they are
called versioning systems or version control systems. At the moment the
most well-known versioning systems are Concurrent Versions System [CVS],
Subversion [SVN], Git [Git], Perforce [Per] and BitKeeper [Bit].

Firstly, the usage of versioning systems enables developers to work on dif-
ferent versions of the same document at the same time. Secondly, all �les are
located at one centralised place where any member of the development team

10

Repository

Working Copy A

Working Copy B

Update

Update

Update

Commit

Commit

Figure 1.2: Illustration of the versioning system's typical operations.

Currently Developed Version

Branch: VER_2_FIXES

Tag: VER_1

Tag: VER_2

Figure 1.3: Illustration of the possible usage of the tags and branches. Version
1 of the software was tagged with a label VER_1, version 2 � VER_2.
Defects, that were found in the version 2 of the software, were �xed in the
branch VER_2_FIXES.

may �nd them without disturbing colleagues. Finally, versioning systems
enable exploration of the software evolution in time.

A place where di�erent versions of �les are stored is called repository.
Throughout the development developers submit to the repository modi�ca-
tions to the documents and download modi�cations made by other develop-
ers. The action of putting own modi�cations to the repository is called com-
mit. The download of modi�cations made by others � update. The down-
loaded version of �les that is used by the developer to perform her tasks
is called working copy (Figure 1.2). Actual semantics of these operations
depend on the concrete versioning system.

Two other important concepts of the versioning system usage are tag and

11

branch. A tag refers to some important snapshot in time, which is consistent
across many �les. These �les at that point may be all tagged with some
name. Branches enable developers to develop several versions of the same �le
(set of �les) at the same time, at di�erent speeds, independently of others.
A particularly useful application of tags and branches together would be
during the release of the software new version: with a tag developers mark
the version of �les that constitute the particular software release. Later, if
defects are found in this version, developers will be able to locate the exact
�les included in the release and �x the defects in the corresponding branch
without disturbing the development of new features (Figure 1.3).

It is rare for a developer to modify a single �le while performing a task.
Usually, she works on a number of �les and after �nishing the task commits
them to the repository. Throughout the thesis such sets of modi�cations are
called contributions. It is worth noticing that a contribution and a commit
do not represent the same concept. In fact a contribution constitutes of one
or more commits and may span many minutes due to network latency or
developer's style of performing commits.

1.4 Software Metrics
Software metrics are quanti�ed expressions of software characteristics. Based
on the object of measurement software metrics are divided into 3 categories:
product metrics (in our case product is a result of the development � soft-
ware), process metrics and project metrics [Kan02]. Product metrics describe
the characteristics of the product, such as size, complexity, design features
and performance. Process metrics are used to improve software development
and maintenance. Examples of process metrics are e�ectiveness of defect
removal during development and response time of the �x process. Project
metrics describe project characteristics and execution: number of software
developers, cost, schedule, and productivity [Kan02].

Probably the most famous product metric is the number of lines of code
� �LOC�. This metric expresses the size of the software. The value of LOC
is convention dependant: should we count number of physical lines or only
non-blank lines, should we include lines containing commentaries? The size
of the code in Figure 1.4 could be either equal to 11 � number of physical
lines, or 7 � number of lines containing source code, or 9 � number on
non-blank lines.

12

01 // setting type attribute to be the class
02 trainingSet
03 .setClassIndex(reference.numAttributes() - 1);
04 testSet.setClassIndex(reference.numAttributes() - 1);
05
06 RandomForest classifier = new RandomForest();
07 classifier.setNumFeatures(featureNum);
08 classifier.setNumTrees(treeNum);
09
10 // building the classifier using training set
11 classifier.buildClassifier(trainingSet);

Figure 1.4: Example of LOC metric.

Usage of software metrics is motivated by the famous saying stating that
it is not possible to control something that cannot be measured [DeM82].
Managers strive to have a control over the software project in order to miti-
gate risks threatening the project success.

Unfortunately it is easier to misuse software metrics rather than apply
them fruitfully. First of all, it is tempting to judge developer's performance
based on the set of metrics. But, this is a dangerous move because a lot of
aspects should be kept in mind. For instance, the most talented developers
often get the most di�cult and time consuming tasks. However, based purely
on numbers we might conclude that the developer is underperforming. Sec-
ondly, as soon as the team members �nd out that they are being evaluated
using particular metric or combination of metrics, they start searching for
possibilities of maximising the management perception of their performance.
Thirdly, no known metric is considered to be accurate and meaningful at the
same time. Finally, in many cases managers just start collecting metrics and
then try to �nd goals that �t with them. Such approach is not working be-
cause of the large number of observable characteristics in software. Without
an appropriate model and concrete goals it is not clear which metrics should
be used and how they should be interpreted.

A better approach is the opposite: we should start on the conceptual

13

Conceptual
Level:
Goals

Operational
Level:

Questions

Quantitative
Level:

Metrics

D
efin

itio
n

A
n

al
ys

is

Decrease number of
defects

 per line of code by 20%

What
is the number

of defects per line
 of code now?

What
components are

more
defect-prone?

Total
number

of lines of
code

Total
number

of defects

Number
of defects by
components

...

Figure 1.5: Example of Goal-Question-Metric approach.

level � de�ne goals to be achieved by the development team. Then carefully
select such questions, that their answers would indicate if the goal has been
reached. And �nally, we should specify metrics, which would help in �nding
the answers to the previously de�ned questions. During the analysis, we
should start with collection of metrics values, continue with answering the
questions and �nish with evaluation of our achievements.

Let's consider a simple example: our goal is to decrease number of defects
in software per line of code by 20% (Figure 1.5). In order to monitor how
this goal is being achieved we need to know what is the ratio of defects to
the number of code lines at the moment. Collection of values for two metrics
is required for answering this question: total number of defects found during
the last month and total number of lines of code written during the last
month. In the similar manner we specify metrics for the second question:
what are the software components where ratio of defects to the number of
lines is the highest. List of such components would indicate where we need
to direct our energy.

The demonstrated approach is known by the name of Goal-Question-
Metric (GQM) framework and was introduced by Basili et al. in �The Goal
Question Metric Approach� [BCR94].

14

Chapter 2

Data Mining

In this chapter we are giving an overview of the data mining methods used
in the remaining chapters of the thesis. We start with a short introduction
to data mining. Then continue with the data mining notation. Finally, we
describe the technique used for prediction of the contribution type.

2.1 Introduction
The steady progress in the information technology has lead to the situation
when we have automated tools for data collection. Existence of such tools has
caused the availability of tremendous amounts of data stored in databases
and data warehouses. But the data itself is not the knowledge: �We are
drowning in data, but starving for knowledge!� [HK00]. Necessity of turning
all these amounts of data into useful knowledge and information has attracted
a lot of attention to data mining.

There are quite many de�nitions of what data mining is [WF05, HK00,
HMS01]. Most agree on these key points: it is an automatic or semi-
automatic process of discovering patterns in data. Discovered patterns should
be previously unknown, non-trivial and meaningful. Non-trivial means that
it is di�cult or not possible to spot such patterns by the naked eye. Meaning-
ful means that found patterns lead to some advantage, usually an economic.
Finally, the data should be present in substantial quantities.

15

2.2 Notation
A data mining technique or algorithm is usually applied to data sets. Data
sets consist of records � instances. Every instance is characterised by its
values on the �xed set of attributes. If we take a database or a spreadsheet
table as an analogy then its rows are instances and columns are attributes.
For example, Table 2.1 contains 7 instances and 4 attributes: �lename, time,
author, and type.

Filename Time Author Type
AjaxRequestErrorWidget.java 20:10 26.04.07 alar BUG
BaseServiceRouterService.java 20:10 26.04.07 - BUG
TemplateMenuWidget.java 15:24 28.04.07 taimo DEVEL.
StandardWizardWidget.java 15:24 28.04.07 taimo DEVEL.
RootWidget.java 15:24 28.04.07 taimo DEVEL.
EventButtonHtmlTag.java 16:38 01.01.67 taimo BUG
SqlFunctionFilter.java 16:38 28.04.07 taimo BUG

Table 2.1: Example of a data set. Each row is a separate instance and each
column � an attribute.

Sometimes instances in the data set contain a special class attribute. Val-
ues of this attribute illustrate how all instances can be divided into di�erent
groups. For instance, for the data set depicted in Table 2.1, the type at-
tribute may be considered as a class, because it tells us that all instances
can be divided into two separate categories: BUG and DEVEL (DEVELOP-
MENT).

It may happen that some instances don't have values for some attributes.
This may be caused by an error in the data collecting software or people
not �lling in the data completely. Such, not existing values are usually
called missing values. Another problem appears when a small number of
instances have extreme values of some attributes. Such values are called out-
liers. In our example (Table 2.1), the second instance has a missing value for
the attribute author and in the penultimate instance the value for attribute
time is an outlier. Both missing values and outliers compromise the accuracy
of the results produced by data mining techniques.

16

2.3 Prediction and Classi�cation
The following tools are usually considered to play a central role in the data
mining process: data description, association rule mining, clustering and
prediction [HK00]. This thesis focuses only on prediction, more speci�cally
on classi�cation.

Prediction techniques are applied when some instances in the data set
contain values of the class attribute and researcher's task is to predict class
for the remaining instances. If values of the class attribute are discrete or
nominal then it is a case for the classi�cation. In case of continuous or
ordered values � regression [HK00]. Examples of classi�cation algorithms
are Decision Tree Induction, Naive Bayes and k-Nearest Neighbor [HK00].

The process of prediction starts with a training: an algorithm gets set
of instances with speci�ed value of the class attribute. Such data set is
called training set. During this step the algorithm tries to learn possible
dependencies between the values of the class and other attributes. After
that we ask the trained algorithm to predict class for other instances.

The accuracy of the classi�cation is usually evaluated as the ratio of
correctly classi�ed instances to the number of all instances. This is easy
if we have the whole data set at hand. But how should we estimate the
accuracy if we have only a subset of the data?

Usage of the training set for both training and estimation of the accu-
racy would produce too optimistic estimate [WF05]. A popular alternative
method is called cross-validation. The whole training set is divided into n
subsets � folds. Then for each fold the algorithm is trained with the remain-
ing folds and after that the current accuracy is evaluated using the current
fold. Hence, the algorithm is trained and tested for n times. The �nal accu-
racy estimation is equal to the ratio of number of correctly predicted classes
for all folds to the total number of all instances in folds [WF05]. n � the
number of folds is speci�ed by the researcher. Commonly, researchers take
the value of n to be 10 and then the technique is called � 10-fold cross-
validation. When the number of folds is taken to be equal to the number of
instances in the data set, then such validation is called leave-one-out. The
name comes from the fact, that at each step we leave one instance out, train
the algorithm using all remaining instances and check if the class of the left
out instance was predicted correctly [WF05].

17

2.4 Random Forest Classi�er
During the experiments we have used a classi�cation algorithm called Ran-
dom Forest Classi�er. The idea behind it is quite simple: generate many
decision trees and output the most frequent class that appeared in the classi-
�cations produced by all these trees [Bre01]. Under the hood random forest
puts together 3 di�erent techniques: decision tree, bagging and randomisa-
tion.

Decision tree is a natural implementation of the �divide-and-conquer�
approach to the classi�cation of the set of the independent instances. In
such tree each node represent a test of a particular attribute. The result of
the test dictates which path down the tree should be taken. Leaf nodes of
the tree represent classes. Hence, to classify an unknown instance one has to
traverse the tree according to the test results in the nodes. The classi�cation
result is the class assigned to the leaf where the traversal ends [WF05]. A
simple example of the decision tree can be seen in Figure 2.1.

LOC

BUG DEVELOPMENT

TIME

DEVELOPMENT

AUTHOR

ENHANCEMENTAUTHOR

MAINTENANCE

< 20 ��20

alar taimo < 16.12.2006 � 16.12.2006

tpeeloalar

Figure 2.1: Example of the decision tree.

In the real life when we have to make an important decision we consult
with our friends and experts lowering the risk of taking an incorrect decision.
The same idea is behind the bagging technique: instead of using only one
classi�er instance for prediction we use many instances of the same classi�er.

18

Each classi�er is trained using instances randomly sampled, with replace-
ment, from the initial training set. During the classi�cation each classi�er
performs prediction on its own and the �nal result is the most frequent class
among predictions of all classi�ers. [WF05].

Randomisation is another technique that is used to improve performance
of the classi�cation. The idea is to introduce some sort of randomness into the
classi�er. Bagging and randomisation are quite similar in sense that bagging
introduces randomness into the training set of the classi�cation algorithm.
An example of randomisation, applied to the decision tree classi�er, is the
following. Typically, during the tree construction, at each node we consider
all available attributes and for the test select the attribute, which permits the
best splitting of the data set instances into subsets. With the randomisation
applied we take into account only some number of randomly chosen attributes
and select the best one out of them. In this case randomisation ensures that
every time even the same data set produces a di�erent decision tree. The
previous example illustrates exactly how random forest classi�er employes
randomisation [Bre01].

Random forest classi�er takes 2 input parameters:

• number of decision trees to be constructed � value of this attribute
in�uences the classi�cation stability. If the number of trees is too small,
then in some cases we might get a classi�er with a high accuracy, in
others � with low. The higher number of trees ensures more stable
results.

• number of randomly selected attributes to be considered during the tree
construction � this attribute a�ects overall accuracy of the classi�ca-
tion. The value of this attribute must be much less than the number
of attributes in the data set. It is advised to tune the value of this
parameter.

To summarise, random forest classi�er uses bagging to generate many
decision trees and during the construction of each tree uses randomly chosen
subset of attributes to create a test at each node of the tree.

19

Chapter 3

Methodology

This chapter starts with an overview of the method we propose to predict the
type of source code contributions. The chapter continues with a step-by-step
description of the method. Each step is illustrated with a simple example.

3.1 Method Overview
We propose the novel method for the prediction of the source code contri-
bution type. The novelty of our method lays in the decision to use software
metrics to perform the classi�cation. Amor et al. have used commentaries,
submitted by the developer, in order to discriminate between di�erent types
of contributions [ARGBN] (see Chapter 5 for details).

Usually, during the commit of the �les to the versioning system, the
developer is asked to provide a commentary describing the modi�cations. It
is quite easy to make such commentaries mandatory, but it is much more
complicated to ensure their meaningfulness without an additional burden.
Contrarily, the usage of software metrics is much less invasive � a developer
doesn't have to submit extra information or perform additional actions.

The proposed method consists of 10 steps depicted in Algorithm 1. The
following section describes every step in detail.

20

Algorithm 1 Overview of the proposed method.
Query historical data from the versioning system
Group source code modi�cations into contributions
for all contributions do

Checkout the version of code valid before the contribution
Calculate metrics for the checked out code
Checkout the version of code valid right after the contribution
Calculate metrics for the checked out code
Calculate delta values of metrics

end for
Ask expert to provide classes for the small number of contributions
Train Random Forest classi�er
Evaluate the classi�cation accuracy

3.2 Method Detailed Description
The �rst step is to obtain historical data of the source code from the version-
ing system. Each record in such data set represents the commit of a single
modi�cation of one �le by a developer (Table 3.1).

Filename Time Author
AjaxRequestErrorWidget.java 20:10 26.04.07 alar
BaseServiceRouterService.java 20:10 26.04.07 alar
TemplateMenuWidget.java 15:24 28.04.07 taimo
StandardWizardWidget.java 15:24 28.04.07 taimo
RootWidget.java 15:24 28.04.07 taimo
EventButtonHtmlTag.java 16:38 28.04.07 taimo
SqlFunctionFilter.java 16:38 28.04.07 taimo
...

Table 3.1: Historical data obtained from the versioning system.

Usually one contribution consists of modi�cations of several �les. So in or-
der to obtain code contributions we group commit statements together using
information about author, commentary and time of the commit (Table 3.2).

21

Filename Time Author
AjaxRequestErrorWidget.java 20:10 26.04.07 alar
BaseServiceRouterService.java 20:10 26.04.07 alar
TemplateMenuWidget.java 15:24 28.04.07 taimo
StandardWizardWidget.java 15:24 28.04.07 taimo
RootWidget.java 15:24 28.04.07 taimo
EventButtonHtmlTag.java 16:38 28.04.07 taimo
SqlFunctionFilter.java 16:38 28.04.07 taimo

Table 3.2: Modi�cations grouped into contributions.

After that we calculate the software metrics for each contribution. We
start with checking out the version of code valid just before the contribution
and calculate metrics values on this code. Then we checkout the version
of the code valid right after the contribution and calculate metrics values.
As a result for each modi�ed �le we have obtained metrics values valid at
the beginning and at the end of the contribution (Table 3.3). If a �le was
deleted during the contribution, then there are no metrics values for this �le
at the end of the contribution. Similarly, if a �le was created during the
contribution, then its start metrics are missing.

Filename LOCstart LOCstart ...
AjaxRequestErrorWidget.java 134 168 ...
BaseServiceRouterService.java 276 154 ...
TemplateMenuWidget.java 342 342 ...
StandardWizardWidget.java 94 231 ...
RootWidget.java 379 - ...
EventButtonHtmlTag.java 143 143 ...
SqlFunctionFilter.java - 164 ...

Table 3.3: Start and end metrics values.

During the next step we calculate delta values of all metrics for each
�le. Delta values are calculated as the value of the metric at the end of the
contribution minus the value of the metric at the start of the contribution.

22

If a �le has delta values of all metrics equal to 0, then this �le is considered
to be unchanged during the corresponding contribution (Table 3.4). If a �le
was deleted or created during the contribution then we substitute missing
values with zeros and calculate delta values similarly to the general case.

Filename LOCdelta ...
AjaxRequestErrorWidget.java 34 ...
BaseServiceRouterService.java -122 ...
TemplateMenuWidget.java 0 0
StandardWizardWidget.java 137 ...
RootWidget.java -379 ...
EventButtonHtmlTag.java 0 0
SqlFunctionFilter.java 164 ...

Table 3.4: Delta values of metrics.

Then we ask an expert to manually classify the type of the small number
of contributions. These values will be used to train the classi�er and evaluate
its accuracy (Table 3.5).

Filename LOCdelta Type
AjaxRequestErrorWidget.java 34 BUG
BaseServiceRouterService.java -122
TemplateMenuWidget.java 0 DEVELOPMENT
StandardWizardWidget.java 137
RootWidget.java -379
EventButtonHtmlTag.java 0 MAINTENANCE
SqlFunctionFilter.java 164

Table 3.5: Contrubutions manually classi�ed by the expert.

Next we train random forest classi�er and calculate its accuracy. Here we
propose two possibilities for classi�cation1. The �rst option is to aggregate

1These are not the only possible approaches. For instance, we may consider each
contribution as an instance with a special (non-vectorial) structure. Then we will be able
to apply kernel- or distance-based prediction methods.

23

metrics delta values over the contributions and classify the contributions
themselves. The second option is to classify modi�ed �les and aggregate
their classes into the contribution class. In the end we would like to test
which approach performs better. Let's consider both of them in detail.

Approach 1. As we have already mentioned, each contribution consists of
several �le modi�cations. We start by aggregating metrics delta values over
all �les modi�ed during the particular contribution. As the result we obtain
delta values for contributions and may use contributions as separate instances
in the training set (Table 3.6). After that we train the random forest classi�er
using this data set. Classi�cation algorithm starts with construction of a
large number of decision trees (see Section 2.4). A real part of such tree can
be seen in Figure 3.1. Each tree is used to make its own prediction and the
overall result is the most frequent class among all predictions. The accuracy
of the classi�er is evaluated using 10-fold cross-validation (see Section 2.3).

LOCsum LOCavg LOCmedian Type
-88 -44 -44 BUG
-242 -80.67 0 DEVELOPMENT
164 82 82 MAINTENANCE

Table 3.6: Approach 1. Training set.

Approach 2. The second approach is to classify each modi�ed �le sepa-
rately. We train the random forest classi�er using data set containing �le
modi�cations as instances (Table 3.7). Figure 3.2 illustrates a top level part
of the real decision tree constructed by the classi�er during experiments.

The accuracy of the classi�er is evaluated using an algorithm (Agorithm 2)
similar to the �leave-one-out� validation (see Section 2). For each contribu-
tion, we use only modi�cations that belong to the remaining contributions
as the training set. Then the classi�er is asked to predict types of all mod-
i�cations of the given contribution. We take the most frequent class to be
the contribution's class. The overall accuracy of the classi�er is the ratio of
correctly predicted classes of contributions to the total number of contribu-
tions.

24

We have described the proposed method and illustrated it with simple
examples. The next chapter contains the overview to the application of this
method on the real open source software project.

Filename LOCdelta Type
AjaxRequestErrorWidget.java 34 BUG
BaseServiceRouterService.java -122 BUG
StandardWizardWidget.java 137 DEVELOPMENT
RootWidget.java -379 DEVELOPMENT
SqlFunctionFilter.java 164 MAINTENANCE

Table 3.7: Appoach 2. Training set.

Algorithm 2 Approach 2. Accuracy estimation.
Require: C− collection of contributions
Ensure: ACCURACY− accuracy of the classi�cation
for all contribution c ∈ C do

M{c} ⇐ all modi�cations of the contribution c

MC−{c} ⇐ modi�cations of all remaining contributions
CLASSIFIER ⇐ instance of the classi�er
train CLASSIFIER using MC−{c}

classify M{c}

CLASSES{c} ⇐ classes of all modi�cations of the contribution c

RESULT ⇐ most frequent class in CLASSES{c}

if RESULT is correct then
NO_OF_CORRECT ⇐ NO_OF_CORRECT + 1

end if
end for
ACCURACY ⇐ NO_OF_CORRECT

NO_OF_CONTRIBUTIONS

25

nc
ss

_m
ax

no
m

_a
vg

cl
oc

_a
vg

lo
c_

m
ed

nc
lo

c_
su

m
M

A
IN

T
E

N
A

N
C

E

B
U

G
D

E
V

E
LO

P
M

E
N

T

<
 7

.5

<
 0

.1
7

>
=

 0
.1

7

<
 5

.2
5

>
=

 5
.2

5

<
 1

2
>

=
 1

2

nc
ss

_m
in

nc
lo

c_
m

ed

np
c_

su
m

st
ar

td
at

e

D
E

V
E

LO
P

M
E

N
T

D
E

V
E

LO
P

M
E

N
T

M
A

IN
T

E
N

A
N

C
E

...

>
=

 7
.5

<
 -

64
.5

>
=

 -
64

.5

<
 -

1.
5

>
=

 -
1.

5

<
 3

5
>

=
 3

5...
...

...

Fi
gu

re
3.
1:

Ex
am

pl
e
of

th
e
de

cis
io
n

tr
ee

co
ns
tr
uc

te
d

by
ra
nd

om
fo
re
st

cla
ss
i�
er

du
rin

g
th
e
ap

pr
oa

ch
1

ex
pe

rim
en
ts
.F

ig
ur
e
ill
us
tr
at
es

on
ly

a
sm

al
lp

ar
to

ft
he

tr
ee

in
clu

di
ng

its
ro
ot

an
d
to
p
lev

el
no

de
s.

26

le
ng

th

al
l_

fil
e_

nu
m

st
ar

td
at

e

st
ar

td
at

e

M
A

IN
T

E
N

A
N

C
E

E
N

H
A

N
C

E
M

E
N

T

D
E

V
E

LO
P

M
E

N
T

lo
c

le
ng

th

...
...

dc

en
dd

at
e

...
le

ng
th

en
dd

at
e

E
N

H
A

N
C

E
M

E
N

T
D

E
V

E
LO

P
M

E
N

T
D

E
V

E
LO

P
M

E
N

T

...
...

<
 1

56
.6

7
>

=
 1

56
.6

7 <
 1

6.
10

.2
00

6
17

:2
9

>
=

 1
6.

10
.2

00
6

17
:2

9

<
 1

5.
08

.2
00

6
14

:3
6

>
=

 1
5.

08
.2

00
6

14
:3

6

<
 -

0.
23

>
=

 -
0.

23

<
 2

6.
05

.2
00

6
02

:1
0

<
 -

0.
5

>
=

 -
0.

5

>
=

 1
32

.8
4

<
 1

32
.8

4

<
 7

8
>

=
 7

8

Fi
gu

re
3.
2:

Ex
am

pl
e
of

th
e
de

cis
io
n

tr
ee

co
ns
tr
uc

te
d

by
ra
nd

om
fo
re
st

cla
ss
i�
er

du
rin

g
th
e
ap

pr
oa

ch
2

ex
pe

rim
en
ts
.F

ig
ur
e
ill
us
tr
at
es

on
ly

a
sm

al
lp

ar
to

ft
he

tr
ee

in
clu

di
ng

its
ro
ot

an
d
to
p
lev

el
no

de
s.

27

Chapter 4

A Case Study: Aranea
Framework

The previous chapter contained the description of the proposed method. Here
we introduce the results of its application on the real open source project.
The chapter starts with a description of the open source project and toolkit
used during the case study. We continue with a presentation of the data sets
used in experiments. The chapter �nishes with an overview of results.

4.1 Aranea Framework
Aranea is an open source Java MVC1 web framework that provides a com-
mon Object-Oriented approach for building web applications, reusing GUI
logic and extending the framework. Additionally it serves as an integration
platform, allowing free intermingling of arbitrary frameworks, components
and applications [MK06].

The choice of Aranea was dictated by the fact that its development style
ensures that each source code contribution has a manually de�ned type asso-
ciated with it. This provides a natural data set for validation of the method
described earlier.

1Model-View-Controller (MVC) � is an architectural pattern for building user inter-
faces. The core idea is to make clear division between domain objects that model appli-
cation's perception of the real world, and presentation objects that are the user interface
elements [Fow]

28

Throughout the development history the directory tree of Aranea Frame-
work contained 9 di�erent directories with Java source �les. Two of them
contain source code of the tests and the framework itself.

• src/ � the source code of the framework

• tests/src/ � the source code of the unit/integration tests

Seven remaining contain source code of the examples demonstrating the
framework usage:

• template/src/

• examples/main/src/

• examples/blank/src/

• examples/common/src/

• examples/widgetHelloName/src/

• examples/serviceHelloWorld/src/

• examples/serviceHelloName/src/

During experiments we have used modi�cations made to all �les in these
directories.

4.2 Toolkit
4.2.1 Changelogic
In order to manage defect issues, feature requests, and code contributions
the Aranea team uses Changelogic system. Changelogic is a con�guration
management tool based on CVS and is meant for small and medium size
IT development and management enterprises as a support tool for software
development processes [Cha]. Recently, SVN support has been added to
Changelogic.

Changelogic uses the concept of a change to express source code contri-
butions. The change binds together tasks and the real modi�cations of the

29

source code: �while task is a description why and how to implement some-
thing, change is the realisation of that on code base� [Cha]. In terms of the
versioning system every change is a separate branch. Hence, it is possible to
get versions of code valid just before the change and right after �nishing it.

Changelogic de�nes 4 types of changes:

bug � defect �xing, as a result the software becomes more stable

development � implementation of new requirements, as a result new de-
fects are introduced and software is less stable

enhancement � stands in between of bug and development � the trigger
for the task is similar to the one of the bug, but as a result functionality
is altered and software doesn't become more stable

maintenance � modi�cations that do not alternate the functionality of the
software, but may a�ect some of its aspects and introduce new defects.

In the case study we have used changes instead of contributions. The
main di�erence between the change and the typical source code contribu-
tion to the open source project is granularity. While contributions usually
contains smaller number of modi�cations, changes consist of several contri-
butions grouped by the same goal. It is hard to foretell whether the usage
of changes would improve or worsen the overall accuracy of the prediction.
Although we haven't tested, we tend to think that the latter holds, because
contributions represent smaller tasks. Hence, they are more focused and
should represent the goal more accurately.

The proposed method was tested on all types of changes available from
the Changelogic instance used in the Aranea development.

4.2.2 SourceKibitzer
SourceKibitzer is an online service that collects and measures programming
metrics from open source java projects all over the web in order to get an
idea about the quality of the code, member activity, development process
and project size [Soub].

We have made several modi�cations to the SourceKibitzer platform so
that it would serve the needs of the thesis. The modi�ed version was used
to collect metrics for the source code of Aranea Framework.

30

The usage of SourceKibitzer has helped us to calculate the list of 11 source
code metrics for Aranea Framework:

Lines of Code (LOC) � counts the number of physical lines in the source
�le including blank lines, executable lines and comments.

Comment Lines of Code (CLOC) � counts number of lines in the source
�le that contain commentaries.

Non-Comment Lines of Code (NCLOC) � counts the number of lines
in the source �le that both don't contain commentaries and are not
blank.

Density of Comments (DC) � the ratio of the number of commented
lines of code (CLOC) to the number of all lines of code (LOC) in the
source �le. Illustrates how much of the source code is commented.

Non Commenting Source Statements (NCSS) � counts the number
of source code statements excluding blank lines and commentaries [Jav].
This is less sensitive to the code style: one statement may occupy sev-
eral lines, and both LOC and NCLOC would count these lines sepa-
rately. NCSS would count them as a single statement.

Number of Methods (NOM) � counts the number of methods in the
source �le.

Weighted Method Count (WMC) � counts the number of methods us-
ing their McCabe's Cyclomatic Complexity as a weight. For a method
McCabe's Cyclomatic Complexity counts number of linearly indepen-
dent paths that may be taken during program execution [Van00].

Boolean Expression Complexity (BEC) � counts the total number of
boolean operations in the source �le.

Class Data Abstraction Coupling (CDAC) �measures the number of
instantiations of classes within the given class. The higher the value of
the metric the more complex data structure of the software [Che].

Class Fan Out Complexity (CFOC) � measures the number of �les a
given class relies on. Square of this value has been shown to indicate
the amount of maintenance required in functional programs [Che].

31

NPath Complexity (NPC) �measures the number of possible execution
paths through a function. Calculation takes into account the nesting
conditional statements and multi-part boolean expressions.

All these metrics can be divided into three subgroups:

• metrics expressing the size of the source code � LOC, NCSS, NCLOC,
and NOM

• metrics expressing the complexity of the source code � WMC, BEC,
CDAC, CFOC, and NPC

• metrics expressing the various commentary properties of the source
code � CLOC and DC.

Such categorisation demonstrates another limitation of this case study. We
have been able to test how well the classi�er is able to distinguish di�erent
types of contributions using quantitative representations of size, complexity
and commentaries of the source code. At this time representations of software
structure and design were left out due to di�culties in automation of their
calculations.

4.2.3 Weka
Weka is a collection of machine learning algorithms for data mining tasks.
The algorithms can either be applied directly to a data set or called from your
own Java code. Weka contains tools for data pre-processing, classi�cation,
regression, clustering, association rules, and visualisation. It is also well-
suited for developing new machine learning schemes. Weka was developed at
the University of Waikato in New Zealand and its name stands for Waikato
Environment for Knowledge Analysis [WF05].

We have used Weka implementation of the random forest classi�er in
order to predict types of changes.

4.3 Method Application
At the time of experiments, the Aranea's Changelogic instance contained 148
changes. The period of the development covered with these changes ranges
from 28.03.2006 to 19.01.2007. The historical data was obtained from the

32

SVN versioning system used by the Aranea development team. The repos-
itory contained data of 147 changes (one change less than the Changelogic
instance). Among them there were 60 BUG-s, 48 DEVELOPMENT-s, 17
ENHANCEMENT-s and 22 MAINTENANCE-s.

Metrics calculation. We have started with calculation of source code met-
rics. For each change we have measured all source �les at the beginning of the
change and at the end. Thus, for each �le of the change we have calculated
two collections of metrics values: change start values and change end values.

Totally, we have measured 1400 unique source �les written in the Java
language. This resulted in 181060 measurements, where each measurement
contained values of 11 metrics valid for the particular source �le of the par-
ticular version.

The calculation of metrics values involved parsing of the source code. If a
�le wasn't syntactically correct then it was impossible to calculate its metrics.
This happened to be a problem with 2 �les:

• src/org/araneaframework/jsp/tests/StringUtilTest.java

• tests/src/org/araneaframework/tests/jsp/StringUtilTest.java

For these �les we weren't able to calculate values for LOC, CLOC, NCLOC,
NOM and DC metrics. During the experiments all measurements of these
two �les were removed from data sets.

Deltas calculation. We have continued with a calculation of the metrics
delta values. Values valid at the start of the change were subtracted from the
values valid at the end of the change. The total number of obtained instances
was 110308. Each instance contained all delta values for the particular �le
of the particular change.

Unfortunately, there was a large number of instances which delta val-
ues contained only zeros. This means that corresponding �les either weren't
modi�ed during the change or used set of metrics couldn't express the mod-
i�cations. An example of such modi�cation is rename of the method with
the length of the new name being close to the length of the old name. In
such case all, the data structure, the number of lines and the number of
statements remains unaltered.

Instances containing only zero values were removed from the data set.
They do not help in classi�cation, since all of them express the same pattern

33

(all values are equal to 0) independently of the change type. The number of
remaining instances was 3040. This also has caused the removal of 16 changes
� all of them contained only instances with all delta values equal to zero.
Among them there were 11 BUG, 3 DEVELOPMENT, 1 MAINTENANCE
and 1 ENHANCEMENT changes. As a result 131 changes remained.

Further, the data set contained a clearly visible outlier. While average
value for the NPC metric was 5.379 and standard deviation 162.595, there
was one instance with delta value of the NPC equal to 691206. This instance
corresponded to an addition of the �le src/org/araneaframework/http/
CustomProxyHandler.java during the change number 31. The �le contained
large number of sequential control statements causing such a high value. We
have removed this instance from the data set.

So the full data set contained 3039 instances, 131 changes with 49 BUG-
s, 45 DEVELOPMENT-s, 16 ENHANCEMENT-s and 21 MAINTENANCE
changes among them.

Data sets. The proposed method was tested on 12 di�erent data sets. We
have used 3 conditions to derive these data sets from the full data set:

• exclusion of some source code directories

• exclusion of instances with small delta values

• inclusion of metrics that characterise changes, like length of the change,
number of �les modi�ed during the change and others.

The summary of the all constructed data sets is available in Table 4.1.
Let's cover all data set construction conditions in detail. The �rst one,

exclusion of some source code directories, was in�uenced by the fact that
modi�cations made to the source code of examples and tests might not ex-
press the goal of the change. In order to test this assumption we have formed
3 data sets out of the full one:

a) modi�cations made to �les in all 9 source code directories (data set
number 4 in Table 4.1)

b) modi�cations made to � src/ and tests/src/ directories (data set
number 8)

c) modi�cations made only to the �les in src/ directory (data set number
12).

34

da
ta

se
t
nu

m
be

r
1

2
3

4
5

6
7

8
9

10
11

12
di
re
ct
or
ie
s
us
ed

sr
c/

X
X

X
te
sts

/s
rc
/

X
X

te
m
pl
at
e/
sr
c/

X
ex
am

pl
es
/b
la
nk

/s
rc
/

X
ex
am

pl
es
/c
om

m
on

/s
rc
/

X
ex
am

pl
es
/m

ai
n/

sr
c/

X
ex
am

pl
es
/s
er
vi
ce
He

llo
Na

m
e/
sr
c/

X
ex
am

pl
es
/s
er
vi
ce
He

llo
W
or
ld
/s
rc
/

X
ex
am

pl
es
/w

id
ge
tH

el
lo
Na

m
e/
sr
c/

X
LO

C
,N

C
SS

or
N
PC

>
9

X
X

X
so
ur
ce

co
de

m
et
ric

s
X

X
X

X
X

X
ch
an

ge
m
et
ric

s
X

X
X

X
X

X
nu

m
be

r
of

m
od

i�
ca
tio

ns
15

33
15

33
30

39
30

39
12

38
12

38
24

31
24

31
11

69
11

69
23

06
23

06
nu

m
be

r
of

ch
an

ge
s

10
9

10
9

13
1

13
1

10
6

10
6

12
8

12
8

10
5

10
5

12
8

12
8

Ta
bl
e
4.
1:

D
es
cr
ip
tio

n
of

th
e
da

ta
se
ts

us
ed

in
th
e
ex
pe

rim
en
ts

35

Behind the second condition, exclusion of instances with small delta val-
ues, there is an intuition that �les that were modi�ed the most express the
goal of the change more accurately. In other words, if a �le was only slightly
altered then it is a carrier of peripheral modi�cation that doesn't provide
interesting information to the classi�er. To express this intuition we have
used the following condition:

delta value of at least one of the LOC, NCSS or NPC is larger than 9
(4.1)

Each existing data set was used to built one additional by removing all in-
stances not satisfying Condition 4.1. As a result 3 additional data sets were
created: 2, 6, and 10 (Table 4.1).

Finally, we have used the third condition to create 6 more data sets: to
each already existing data set we added number of metrics that characterise
changes:

• start date of the change

• end date of the change

• length of the change in hours

• number of modi�ed �les during the change

• number of �les satisfying Condition 4.1

• ratio of the number of �les not satisfying Condition 4.1 to the number
of modi�ed �les during the change

These metrics were added with a goal of testing if change speci�c informa-
tion in�uences the accuracy of the prediction. Numbers of new data sets in
Table 4.1 are 1, 3, 5, 7, 9, and 11.

The next step was the classi�cation itself. We have applied the random
forest classi�er to all these data sets. In the methodology chapter we have
introduced two approaches for the classi�cation. Let's cover their application
separately and after that evaluate the overall result.

36

4.4 Classi�cation Using Aggregated Modi�ca-
tions

The central idea of the �rst approach is to classify changes themselves. All
data set instances were grouped by changes and their delta values were aggre-
gated. For each source code metric we have calculated 5 aggregated values:
minimum, maximum, sum, average and median. Values of the change spe-
ci�c metrics were taken as-is because their values are equal for all instances
belonging to the same change.

Every instance in data sets containing both source code metrics and
change metrics (data sets 1, 3, 5, 7, 9, 11) had 62 attributes: 55 source
code metrics, 6 change metrics, and 1 class attribute. Correspondingly, in-
stances from data sets with only source code metrics (data sets 2, 4, 6, 8, 10,
12) had 56 attributes.

We had to specify values for two input parameters of the random forest
classi�er:

• number of trees to be generated and afterwards used in the prediction
� due to the fact that number of instances in each data set was quite
small (ranging from 109 to 131) we had to pay special attention to the
stability of the prediction. Hence, we have decided to generate 1000
trees.

• number of random attributes used during construction of the tree �
according to the speci�cation of random forest classi�er value of this
parameter should be much less than the total number of attributes in
the data set. We have decided to check how the value of this parameter
a�ects the prediction accuracy. Values of the parameter were taken
from the interval 1, 2, . . . , 10. For each setting (data set, number of
attributes, number of trees) we have performed 10 experiments.

Totally, 1200 experiments were performed to test accuracy of the �rst ap-
proach � 100 experiments per every data set.

The peak accuracy achieved during experiments was correct classi�cation
of 55.47% of changes. We have observed such result for 4 times with the
following settings:

• data set number 7, 3 attributes, 1000 trees

37

• data set number 7, 8 attributes, 1000 trees � 2 times

• data set number 11, 2 attributes, 1000 trees.

In the average the best accuracy was produced with the data set number
7 using 8 random attributes for the tree construction � 52.27% of changes
were classi�ed correctly.

1 2 3 4 5 6 7 8 9 10
40

42,5

45

47,5

50

52,5

55

Data set 1
Data set 3

Data set 5

Data set 7
Data set 9

Data set 11

Number of attributes

A
cc

ur
ac

y

Figure 4.1: Approach 1. A chart illustrating the performance of the random
forest classi�er on the data sets containing both source code and change
metrics (data sets number 1, 3, 5, 7, 9, 11).

Results of all experiments are available in Appendix A. Here, we only
present charts that depict the average classi�er performance depending on
the setting (see Figures 4.1 and 4.2).

Interestingly, data sets containing all instances (data sets number 3, 4,
7, 8, 11, 12) have performed better than data sets containing only instances
satisfying Condition 4.1 (data sets number 1, 2, 5, 6, 9, 10). The average
di�erence of accuracy between them was 6.45%. Such a high margin have

38

1 2 3 4 5 6 7 8 9 10
37

39,5

42

44,5

47

49,5

Data set 2

Data set 4

Data set 6

Data set 8
Data set 10

Data set 12

Number of attributes

A
cc

ur
ac

y

Figure 4.2: Approach 1. A chart illustrating the performance of the random
forest classi�er on the data sets containing only source code metrics (data
sets number 2, 4, 6, 8, 10, 12).

led us to the conclusion, that even small delta values carry the information
useful for making predictions.

It is worth noticing that usage of change metrics (start date, end date,
number of �les etc) in the average improved accuracy by 3.01%. Based on this
observation we conclude that not only source code metrics should be used for
classi�cation but also quantitative information concerning the change itself.

4.5 Classi�cation Using Separate Modi�cations
The idea of the second approach was to predict type for all data set instances
separately and then aggregate predicted types over the changes. The total
number of attributes for data sets containing both source code and change
metrics (data sets number 1, 3, 5, 7, 9, 11) was 16: 11 source code metrics, 4
change metrics, and a class attribute. This time set of change speci�c metrics

39

included:

• start date of the change

• end date of the change

• length of the change in hours

• number of modi�ed �les during the change.

Instances from the data sets that contained only source code metrics (data
sets number 2, 4, 6, 8, 10, 12) had 12 attributes: 11 source code metrics and
a class attribute.

During the test of the second approach we have used random forest clas-
si�er with slightly di�erent settings:

• number of generated trees � the size of the data set comparing to the
previous experiments was a magnitude larger: the smallest data set
contained 1169 instances and the largest � 3039 instances. Hence, we
were able to decrease the number of trees to be 500.

• number of random attributes � data sets, used for experimenting with
the second approach, contained at most 15 attributes eligible for usage
during the tree construction. We have decided to try di�erent values
for this parameter from the interval 1, 2, . . . , 5.

This time the number of experiments was much smaller � each data set was
used for prediction for 5 times: one time for each possible value of the �number
of random attributes� parameter. We explain this by the fact that large size
of the data sets should ensure stable results. Another argument is usage of a
more sophisticated and time-consuming algorithm for the evaluation of the
classi�er accuracy (Alogrithm 2). Basically, for each change we have built a
random forest classi�er using modi�cations from the remaining changes and
then checked its accuracy on the modi�cations of the given change.

The table containing all results can be found in Appendix B. Here we
outline only the most interesting facts.

The best classi�er has correctly classi�ed 44.53% of changes. Top four
results were produced by the following settings:

• data set number 7, 1 attribute, 500 trees � 44.53%

40

1 2 3 4 5
35

37,5

40

42,5

45

Data set 1
Data set 3
Data set 5
Data set 7

Data set 9
Data set 11

Number of attributes

A
cc

ur
ac

y

Figure 4.3: Approach 2. Chart that illustrates performance of the random
forest classi�er on the data sets that contain both code and change metrics
(1, 3, 5, 7, 9, 11).

• data set number 5, 4 attributes, 500 trees � 44.34%

• data set number 11, 1 attribute, 500 trees � 43.75%

• data set number 3, 1 attribute, 500 trees � 43.51%.

All of these settings included data sets containing both source code and
change metrics. While data sets number 3, 7 and 11 contained all instances,
the data set number 5 consisted of the instances satisfying the condition 4.1.

From Figure 4.3 we can see that classi�er accuracy achieved with data
sets containing all instances and data sets constructed with Condition 4.1 was
almost equal: in some case the former (data sets number 3, 7, 11) performed
better, in other cases � the latter (data sets number 1, 5, 9). The average
di�erence was −0.17% (negative) and the median � 0.26%

Interestingly, the classi�cation of data sets containing all modi�cations
with only source code metrics (data sets number 4, 8, 12) didn't produce
any results. The random forest classi�er wasn't able to construct any tree

41

1 2 3 4 5
15

17,5

20

22,5

25

27,5

30

32,5

35

37,5

40

42,5

45

Data set 1

Data set 2
Data set 5

Data set 6
Data set 9

Data set 10

Number of attributes

A
cc

ur
ac

y

Figure 4.4: Approach 2. Chart that compares performance of the random
forest classi�er on the data sets that contain both code and change metrics
against the data sets containing only code metrics (1, 2, 5, 6, 9, 10).

� it went into very deep recursion and caused �out of memory� and �stack
over�ow� errors. We have concluded, that this was caused by the controversy
in the data which didn't permit the splitting of the instances into to the
di�erent tree branches according to the class.

Fortunately, we were able to see how the existence of change metrics
a�ected the accuracy of the classi�er on the data sets satisfying Condition 4.1
(Figure 4.4). The average di�erence in accuracy was very large � 21.39%.
Such increase could be explained by the fact that quantitative data about
the change helps classi�er to relate all modi�cations belonging to the same
change and provide them with a more consistent prediction of the type.

4.6 Results Overview
We have had expectations of the prediction accuracy to be around 70% � the
accuracy achieved in the similar research conducted by Amor et al. [ARGBN].

42

But, during the experiments we weren't able to predict the type of changes
with accuracy higher than 55.47%. We don't consider this to be a poor result,
because of the several facts.

First of all, we are able to conclude that approach of aggregating metric
values over the changes and then classifying them (approach 1) performed
better than classi�cation of modi�cations and subsequent aggregation of
modi�cation types into the change type (approach 2). While the highest
accuracy achieved by the second approach was 44.53%, the average accuracy
of the �rst approach with the best setting was 52.27%. In comparison, the
predictor, that would classify all changes as BUG-s, would have been correct
in 37.40% of the cases.

Secondly, we have demonstrated how choices made during the data set
construction a�ect the performance of the classi�er:

• Prediction of the data set containing all instances is more accurate than
the one of the data sets with only instances satisfying the condition of
�delta value of at least one of the LOC, NCSS or NPC being larger
than 9� (Condition 4.1). In the tests of the �rst approach the former
performed better than the latter by 6.45% in the average. Tests of the
second approach demonstrated equal accuracy.

• Addition of the quantitative information concerning the change im-
proves the accuracy. The average increase for the �rst approach was
3.01%, for the second � 21.39%.

• Throughout the experiments there was no clearly visible di�erence in
the prediction accuracy for the data sets containing �le modi�cations
from all resource directories and data sets with modi�cations from some
subset of directories.

Thirdly, our later quick experiments have demonstrated that random for-
est classi�er was able to distinguish BUG changes from other changes with
the accuracy equal to 70%. Our intuition tells us that BUG changes are
usually smaller in size and values of source code metrics change only a little.
The classi�er was able to use this information for prediction. Other types of
changes (DEVELOPMENT, ENHANCEMENT and MAINTENANCE) are
not so easily distinguishable and classi�er needs an additional information.
We think that the needed information may be provided by the more diverse
set of metrics. Such set would include not only size and complexity metrics,

43

but also quantitative expressions of the structural and design alternations of
the software.

44

Chapter 5

Related Work

In this chapter we review articles and tools that solve similar problems in
the same area.

First of all, we would like to emphasise the article by Amor et al. ti-
tled "Discriminating Development Activities in Versioning Systems: A Case
Study" [ARGBN]. Although the purpose of their work is di�erent from ours
� automation of e�ort estimation, the goal is similar: classi�cation of the de-
veloper contributions using the historical data available from the versioning
system. Authors have de�ned 4 types of contributions:

corrective � defect �xing

adaptive � implementation of new functionality

perfective � code refactorings and modi�cations in source code documen-
tation

administrative tasks � changes in copyright, version number.

Authors have started with grouping of code modi�cations into contribu-
tions, just like we did. After that the expert was asked to classify manually
small number of contributions. This information along with the contribution
commentaries was used to train the naive Bayes classi�er. Finally, accuracy
of the classi�er was evaluated on the remaining data. The approach was
tested using the historical data of the FreeBSD operating system [Fre]. The
number of contribution was 33335 and expert has provided classes for 500 of

45

them. The classi�er predicted type correctly in more than 70% of the cases
veri�ed by the expert.

The main di�erence between the method proposed by Amor et al. and
our method is the source of the information used for classi�cation: we have
used values of software metrics and Amor et al. have used commentaries
submitted by developers. Unfortunately, commentaries are side-e�ects of the
commit: one can ensure existence of the commentary, but it is di�cult to
ensure its meaningfulness. On the other hand if a source code was modi�ed,
then there is also a change in the values of metrics. Hence, no commentaries
are needed to apply our method � to obtain the data we use the core result
(source code) of the developer's work.

The second article that inspired our study is "An empirical study of �ne-
grained software modi�cations" by German et al. [Ger06]. Authors have tried
to �nd answers for several questions. For instance:

• Are defect �xing contributions look di�erently from contributions in-
tended to add new functionality?

• Do contributions made during the di�erent stages of development look
di�erently?

• Can we create metrics that describe contributions?
During their experiments authors have used historical data of the Evolution
mail client [Evo]. Among other results described in the article, two were
particularly interesting for us. First of all, authors have found that the
contributions intended to �x defects typically contain smaller number of �les
than the ones used to improve the code documentation: 2.95 �les in average
versus 13.48. We have applied this observation in our experiments by adding
the �number of modi�ed �les� metric to the data sets.

The second interesting observation is that during the software mainte-
nance period the number of contributions is smaller than during the period
when new functionality is being implemented. This observation provided us
with an intuition of how project's state may be predicted: one can calculate
the number of contributions during the last month and if it is smaller than
some threshold n then no new features are being developed and project is
being only maintained.

Finally, a very interesting article by Singh et al. titled "An Empirical
Investigation of Code Contribution, Communication Participation, and Re-
lease Strategy in Open Source Software Development: A Conditional Hazard

46

Model Approach" provides results of investigation how development char-
acteristics, like practices in code contribution, participation in communica-
tion, and release strategy, in�uence the progress of the open source software
project [SFT07].

The study includes data from more than 200 open source projects hosted
at the SourceForge [Soua] � the largest hosting services provider for open
source projects. Authors have de�ned a hazard function that speci�es the
probability density (over time) of releasing a stable version of the software
given that the team doesn't have a stable release up to the given time. The
function's de�nition included the following metrics:
GDEV � Gini index of developer code contributions [Dam]

GCOMM � Gini index of developer communication contributions

NTHREAD � Total number of threads in the mailing list

THDEPTH � Average thread depth of the mailing list for a project

NRLEASE � Total number of beta packages released by a project prior
to the stable release

NDLOAD � Total number of downloads prior to the stable release

NDVLPR � The number of unique developers that have contributed cod-
ing

SIZE � Total number of �les of the source code in the stable release.
Using this function the authors have found out that chances of releasing �rst
stable version raise during �rst 4 years of the development, but then they
drop signi�cantly. Secondly, 20% of the most active developers contribute
80% of the source code. Almost the same group of developers produce 81% of
the messages posted to the project mailing list. Thirdly, authors have made
a conclusion that probability of being successful increases with the existence
of the core developer group. At the same time domination of a small group
of people in communication leads to unhealthy group dynamics and lowers
the level of innovation and knowledge sharing in the community.

Not only researchers have been attracted by the success of open source
software � there is a number of initiatives that try to make open source soft-
ware even more open and provide the data to make process of its evaluation
more simple. The most noticeable are:

47

SourceKibitzer � an online service started in 2006 [Soub]. The team be-
hind SourceKibitzer plans to create a knowledge base that would add
transparency to open source Java projects through analysis, bench-
marking and criticism. At the moment (April 2007) it hosts the data
of nearly 600 open source projects written in the Java language. The
focus on one programming language enables SourceKibitzer to collect
a deeper set of software metrics.

Ohloh � another online service founded in 2004 as a way to provide more
visibility into software development [Ohl]. Founders characterise it as
a resource for open source intelligence of thousands of open source
projects. Ohloh uses the source code of the project and infrastructure
used by the team to collect its metrics. According to various resources
by the April 2007 Ohloh has indexed from 3000 to 4200 projects [Ohl,
Wik07].

Business Readiness Index � a framework for rating open source soft-
ware [Busa]. Rating is calculated as a weighted sum of scores in several
categories like functionality, usability, security, scalability and so forth
[Busb]. Authors propose the framework as a trusted and open stan-
dard for open source software evaluation. Currently (April 2007), the
download section of the site lists evaluations of 17 projects.

48

Conclusions

Open source software is gaining acceptance and support from the larger num-
ber of commercial, public and governmental organisations. But, before mak-
ing the decision to start using the particular solution organisations carefully
evaluate all possibilities. Otherwise, an insu�ciently thought-out selection
may compromise the development speed, the stability, maintainability and
availability of the application. Thus, the ability to objectively evaluate open
source solutions is becoming crucial to success.

We have introduced the novel approach for the automatic prediction of
the source code contribution type. Such prediction provides an objective
insight into the progress of the open source project and helps to evaluate its
current state. The novelty of our method lays in the application of software
metrics to perform the prediction. Usage of software metrics doesn't impose
additional constraints on the development.

Our method was tested on the real open source project: Aranea Frame-
work [MK06]. We have calculated values of 17 software metrics for each
contribution to Aranea, aggregated and combined this data in various man-
ners (Table 4.1) and performed several experiments on it.

The overall accuracy of the classi�cation was poorer than we had ex-
pected. We were looking for the accuracy around 70%. In reality, we were
able to achieve a peak accuracy of 55.47%. Nevertheless, we consider results
to be positive.

First of all, we have found that classi�cation of the contributions with
aggregated metrics values is more accurate than classi�cation of the source
code modi�cations and subsequent aggregation of the results into the contri-
bution type. The former approach produced the correct type for 45 − 50%
of contributions, depending on the particular data set, with the maximum
equal to 55.47% (Section 4.4). The best result of the latter approach enabled
correct prediction of the contribution type in 44.53% of cases (Section 4.5).

49

In comparison, the classi�er, that would predict the types of all contribu-
tions to be equal to the most frequent type in the data set, would have been
correct in 37.40% of the cases.

Secondly, the classi�er makes heavy usage of the metrics that characterise
the contribution itself, like length in hours, number of �les and others. Addi-
tion of such metrics to the data sets has improved the classi�cation accuracy.
For the data sets with metrics values aggregated over the contributions aver-
age improvement was 6.45%. Classi�cation using the source �le modi�cations
separately was improved by 21.39% in average.

Thirdly, we have shown that assumption that �les modi�ed the most
express the type of the contribution more informatively doesn't hold. In
fact, the inclusion of all modi�cations independently of their metrics values
has generally increased the accuracy by 3.01%.

All these facts have led us to a conclusion that in order to ensure the better
accuracy of the prediction the data set should include all modi�cations, every
modi�cation should be characterised by both source code and contribution
metrics and modi�cations should be aggregated over contributions prior to
classi�cation.

Finally, we have demonstrated the potential of usage of software metrics
for the prediction of the contribution type and we hope that our work would
serve as a solid base for further experiments. For instance, it would be inter-
esting to test the accuracy of the method using more diverse set of metrics.
Inclusion of metrics that express the alternation of the code structure, hier-
archy of classes and modularisation would surely provide a classi�er with an
additional information to be used for discrimination of contribution types.

It is very important to test the proposed method on the larger number of
open source projects. Only then we will be able to objectively evaluate its
performance.

Throughout the experiments we have noticed interesting patterns in the
data. For instance, sometimes delta metrics of two �les in the same contribu-
tion had exactly opposite values � this is a clear sign that one �le was moved
or renamed during the contribution. Such reorganisation might be speci�c to
the MAINTENANCE contributions. We were able to see other patterns as
well: (un)commenting of a source code block, extraction of a functions from
the �le, and so on. It would be interesting to annotate all such patterns and
then analyse associations between them and types of contributions.

We expect that the implementation of the proposed method will be used
by a larger tool in order to evaluate open source software projects. The

50

tool will combine the types of source code contributions with the similar
knowledge obtained from the mailing list and issue tracking system of the
same project, and perform automatic analysis of the whole information. As
the result the state of the open source software project will be evaluated.
The classi�cation of the source code contribution type will play a signi�cant
role in such analysis.

51

Lähtekoodi muudatuste tüüpi
automaatne ennustamine

Magistritöö (40AP)
Anton Litvinenko
Sisukokkuvõte

Äriühingud ja riigiasutused kasutavad ja toetavad üha enam avatud lähte-
koodiga tarkvaralahendusi. Enne konkreetse lahenduse kasutuselevõttu tuleb
aga alternatiive hoolikalt hinnata. Läbimõtlemata valik seab asutuse tegevuse
ohtu � missiooni- ja ärikriitilised lahendused võivad muutuda ebastabiilse-
teks või kättesaamatuteks, arenduse kiirus võib kannatada ning hooldustööde
maksumus kasvada kordades. Objektiivne hinnang avatud lähtekoodiga tark-
vara küpsusele muutub otsustavaks edukuse faktoriks.

Avatud lähtekoodiga tarkvara on tuntud oma avalikuse tõttu. Selle lähte-
kood on vabalt kättesaadav ning arendusprojekti seltskond ja infrastruktuur
on läbipaistvad. Kõik see võimaldab koguda tarkvara oleku hindamiseks va-
jalikku infot. Sellise analüüsi teostamine käsitsi on aga ajakulukas ning ru-
tiinne.

Käesolevas töös tehakse esimesed sammud avatud lähtekoodiga tarkva-
ra hindamise automatiseerimise suunas. Lähenemise põhieelduseks on seose
olemasolu tarkvara oleku ja koodimuudatuse iseloomu vahel. Näiteks, juhul
kui viimaste muudatuste hulgas on parandatud peamiselt vigu, siis tarkva-
ra stabiliseerub ning lähiajal on oodata uut väljalaset. Samas, kui viimaste
muudatuste eesmärk on olnud peamiselt uute funktsionaalsuste lisamine, on
tarkvara alles aktiivses arendusprotsessis.

52

Käesoleva töö eesmärk on töötada välja meetod, mis võimaldab koodi-
muudatuste tüüpe automaatselt määratleda. Eesmärgi saavutamiseks on ka-
vas analüüsida tarkvarameetrikate väärtusi, sest iga koodimuudatus toob en-
daga kaasa ka ka teatud meetrikate väärtuste languse või kasvu. Näiteks suu-
rendab iga uue funktsiooni lisamine meetrikate �koodiridade arv� ja �funkt-
sioonide arv� väärtusi.

Magistritöö esimeses kahes peatükis antakse ülevaade avatud lähtekoo-
diga tarkvaraarendusest, versioonihaldussüsteemidest, tarkvarameetrikatest
ja andmekaevanduse tehnikatest. Versioonihaldussüsteemid aitavad jälgida
tarkvara muudatusi ning kätte saada lähtekoodi varasemad versioonid. And-
mekaevanduse tehnikaid kasutatakse muudatuste tüüpide ennustamiseks.

Kolmandas peatükis kirjeldatakse pakutud meetodit ja illustreeritakse se-
da lihtsate näidetega. Neljandas peatükis kirjeldatakse meetodi rakendamist
reaalse avatud lähtekoodiga projekti Aranea Framework peal. Tähelepanu
pööratakse erinevatele ennustuse täpsust mõjutavatele aspektidele: pisimuu-
datuste välja�ltreerimine, lähtekoodi failide valikkasutus ja meetrikate komp-
lekti valik. Peatüki lõpus demonstreeritakse meetodi täpsust erineval viisil
konstrueeritud andmehulkade peal. Põgusalt kirjeldatakse ka potentsiaalseid
viise meetodi täpsuse parandamiseks.

Töö tulemused näitavad, et tarkvarameetrikad on rakendatavad koodi-
muudatuste iseloomu ennustamiseks. Paremaid tulemusi oodati meetodi ra-
kendamisel ennustuse täpsuse osas, samas võib öelda, et tulemusi mõjutas
kindlasti kasutatud meetrikate hulga ühekülgsus. Meetodile täpsema hinnan-
gu andmiseks vajab see testimist mitmekülgsema tarkvarameetrikate hulgaga
suurema arvu projektide peal.

53

Bibliography

[ARGBN] J.J. Amor, G. Robles, J.M. Gonzalez-Barahona,
and A. Navarro. Discriminating Develop-
ment Activities in Versioning Systems: A Case
Study. http://gsyc.es/~jjamor/research/papers/
2006-promise-jjamor-robles-barahona-anavarro.pdf.
[Online; accessed 10-May-2007].

[BCR94] V.R. Basili, G. Caldiera, and H.D. Rombach. The Goal Ques-
tion Metric Approach. Encyclopedia of Software Engineering,
1:528�532, 1994.

[Bit] BitKeeper. http://www.bitkeeper.com/. [Online; accessed
14-May-2007].

[Bre01] L. Breiman. Random Forests. Machine Learning, 45(1):5�32,
2001.

[Busa] Business Readiness Rating. http://www.openbrr.org/. [On-
line; accessed 04-May-2007].

[Busb] Business Readiness Rating for Open Source � White
paper. http://www.openbrr.org/wiki/images/d/da/BRR_
whitepaper_2005RFC1.pdf. [Online; accessed 04-May-2007].

[Cha] Changelogic. http://www.changelogic.com/
GettingStarted/CreateChange. [Online; accessed 27-
April-2007].

[Che] Checkstyle. Checkstyle Metrics De�nition. http://
checkstyle.sourceforge.net/config_metrics.html. [On-
line; accessed 27-April-2007].

54

[CVS] Concurrent Versions System (CVS). http://www.nongnu.org/
cvs/. [Online; accessed 14-May-2007].

[CWL+07] K. Crowston, K. Wei, Q. Li, U. Y. Eseryel, and J. Howison.
Self-organization of teams in free/libre open source software
development. Information and Software Technology Journal,
49:564�575, 2007.

[Dam] C. Damgaard. Gini Coe�cient. From MathWorld � A Wol-
fram Web Resource, created by Eric W. Weisstein. http:
//mathworld.wolfram.com/GiniCoefficient.html. [Online;
accessed 04-May-2007].

[DeM82] T. DeMarco. Controlling Software Projects: Manage-
ment, Measurement & Estimation. Yourdon Computing Series.
Prentice-Hall, Inc., Englewood Cli�s, NJ, USA, 1982.

[Evo] Evolution Mail Client. http://www.gnome.org/projects/
evolution/. [Online; accessed 14-May-2007].

[FLOa] FLOSSmole � collaborative collection and analysis of free/li-
bre/open source project data. http://ossmole.sourceforge.
net/. [Online; accessed 04-May-2007].

[FLOb] FLOSSWorld. http://www.flossworld.org/. [Online; ac-
cessed 14-May-2007].

[Fow] M. Fowler. GUI Architectures. http://www.martinfowler.
com/eaaDev/uiArchs.html. [Online, accessed 08-May-2007].

[Fre] FreeBSD Operating System. http://www.freebsd.org/. [On-
line; accessed 14-May-2007].

[Ger06] D.M. German. An empirical study of �ne-grained software
modi�cations. Empirical Software Engineering, 11(3):369�393,
2006.

[GGKR02] R.A. Ghosh, R. Glott, B. Krieger, and G. Robles. Free/Libre
and Open Source Software: Survey and Study, Part 4: Survey
of Developers. International Institute of Infonomics, University
of Maastricht, 2002.

55

[Git] Git. http://git.or.cz/. [Online; accessed 14-May-2007].

[GSy] GSyC/LibreSoft Research Group. http://libresoft.urjc.
es/. [Online; accessed 14-May-2007].

[HK00] J. Han and M. Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2000.

[HMS01] D.J. Hand, H. Mannila, and P. Smyth. Principles of Data
Mining. Bradford Book, 2001.

[Ini] Open Source Initiative. Open Source De�nition. http://www.
opensource.org/docs/osd. [Online; accessed 27-April-2007].

[Jav] JavaNCSS. JavaNCSS Metrics De�nition. http://www.kclee.
de/clemens/java/javancss/. [Online; accessed 27-April-
2007].

[Kan02] S.H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley, 2002.

[LFRGB04] L. Lopez-Fernandez, G. Robles, and J.M. Gonzalez-Barahona.
Applying Social Network Analysis to the Information in CVS
Repositories. International Workshop on Mining Software
Repositories, 2004.

[MK06] Oleg Mürk and Jevgeni Kabanov. Aranea: web framework
construction and integration kit. In PPPJ '06: Proceedings
of the 4th international symposium on Principles and practice
of programming in Java, pages 163�172, New York, NY, USA,
2006. ACM Press.

[Ohl] Ohloh. http://www.ohloh.net/. [Online; accessed 04-May-
2007].

[Ope] Open Source Initiative. http://www.opensource.org/. [On-
line; accessed 27-April-2007].

[Per] Perforce. http://www.perforce.com/. [Online; accessed 14-
May-2007].

56

[Quaa] QualiPSo. http://www.qualipso.org/. [Online; accessed 14-
May-2007].

[QUAb] QUALOSS. http://www.qualoss.org/. [Online; accessed 14-
May-2007].

[RAGBH05] G. Robles, JJ Amor, JM Gonzalez-Barahona, and I. Herraiz.
Evolution and growth in large libre software projects. Princi-
ples of Software Evolution, Eighth International Workshop on,
pages 165�174, 2005.

[RGBMA06] G. Robles, J.M. Gonzalez-Barahona, M. Michlmayr, and J.J.
Amor. Mining large software compilations over time: another
perspective of software evolution. Proceedings of the 2006 inter-
national workshop on Mining software repositories, pages 3�9,
2006.

[SFT07] P.V. Singh, M. Fan, and Y. Tan. An Empirical Investigation
of Code Contribution, Communication Participation, and Re-
lease Strategy in Open Source Software Development: A Con-
ditional Hazard Model Approach. http://opensource.mit.
edu/papers/singh_fan_tan.pdf, 2007. [Online; accessed 27-
April-2007].

[Soua] SourceForge. http://sourceforge.net/docs/about. [Online;
accessed 04-May-2007].

[Soub] SourceKibitzer. http://www.sourcekibitzer.org/. [Online;
accessed 04-May-2007].

[SQO] SQO-OSS. http://www.sqo-oss.eu/. [Online; accessed 14-
May-2007].

[SVN] Subversion (SVN). http://subversion.tigris.org/. [On-
line; accessed 14-May-2007].

[Van00] E. VanDoren. Cyclomatic Complexity. http://www.sei.cmu.
edu/str/descriptions/cyclomatic_body.html, 2000. [On-
line; accessed 27-April-2007].

57

[WF05] I.H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2 edition,
2005.

[Wik07] Wikipedia. Ohloh � Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=
Ohloh&oldid=125097327, 2007. [Online; accessed 04-May-
2007].

[Wu06] J. Wu. Open Source Software Evolution and Its Dynamics. PhD
thesis, University of Waterloo, Waterloo, Ontario, Canada,
2006.

[XCM06] J. Xu, S. Christley, and G. Madey. Application of Social Net-
work Analysis to the Study of Open Source Software. http:
//www.nd.edu/~oss/Papers/Ch11-N52769.pdf, 2006. [On-
line; accessed 04-May-2007].

58

Appendix A

Prediction Results for the
Approach 1

Here we present the results of the prediction described in Section 4.4. Metrics
delta values for source �le modi�cations were aggregated over contributions
prior to prediction of the contribution type.

59

D
at
a
Se

t
1

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

44
.0
4

43
.1
2

44
.0
4

44
.9
5

45
.8
7

43
.1
2

43
.1
2

41
.2
8

44
.9
5

45
.8
7

44
.0
4

2
at
t.-

s
45

.8
7

45
.8
7

43
.1
2

45
.8
7

44
.0
4

47
.7
1

41
.2
8

43
.1
2

41
.2
8

44
.0
4

44
.2
2

3
at
t.-

s
41

.2
8

44
.0
4

42
.2

45
.8
7

43
.1
2

44
.9
5

43
.1
2

44
.0
4

44
.0
4

46
.7
9

43
.9
5

4
at
t.-

s
44

.0
4

41
.2
8

45
.8
7

45
.8
7

44
.0
4

39
.4
5

44
.9
5

45
.8
7

46
.7
9

39
.4
5

43
.7
6

5
at
t.-

s
44

.0
4

41
.2
8

39
.4
5

42
.2

44
.0
4

47
.7
1

44
.9
5

44
.9
5

42
.2

44
.9
5

43
.5
8

6
at
t.-

s
44

.0
4

44
.0
4

45
.8
7

44
.0
4

40
.3
7

43
.1
2

44
.0
4

44
.9
5

42
.2

44
.0
4

43
.6
7

7
at
t.-

s
44

.9
5

43
.1
2

44
.0
4

42
.2

41
.2
8

44
.9
5

45
.8
7

46
.7
9

44
.0
4

44
.9
5

44
.2
2

8
at
t.-

s
48

.6
2

42
.2

43
.1
2

43
.1
2

42
.2

41
.2
8

43
.1
2

46
.7
9

43
.1
2

42
.2

43
.5
8

9
at
t.-

s
47

.7
1

42
.2

39
.4
5

44
.9
5

42
.2

41
.2
8

45
.8
7

44
.0
4

44
.9
5

42
.2

43
.4
9

10
at
t.-

s
44

.9
5

44
.0
4

45
.8
7

40
.3
7

43
.1
2

39
.4
5

40
.3
7

41
.2
8

41
.2
8

44
.9
5

42
.5
7

Ta
bl
e
A.

1:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
1.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s4

8.
62

%
.

60

D
at
a
Se

t
2

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

42
.2

39
.4
5

39
.4
5

41
.2
8

44
.9
5

44
.0
4

44
.9
5

42
.2

44
.9
5

42
.2

42
.5
7

2
at
t.-

s
41

.2
8

39
.4
5

34
.8
6

37
.6
1

43
.1
2

44
.9
5

41
.2
8

44
.0
4

38
.5
3

40
.3
7

40
.5
5

3
at
t.-

s
41

.2
8

39
.4
5

42
.2

42
.2

42
.2

40
.3
7

41
.2
8

43
.1
2

41
.2
8

42
.2

41
.5
6

4
at
t.-

s
44

.0
4

44
.0
4

44
.0
4

40
.3
7

44
.9
5

38
.5
3

43
.1
2

40
.3
7

39
.4
5

43
.1
2

42
.2

5
at
t.-

s
40

.3
7

40
.3
7

39
.4
5

43
.1
2

39
.4
5

41
.2
8

39
.4
5

42
.2

41
.2
8

41
.2
8

40
.8
3

6
at
t.-

s
42

.2
44

.9
5

38
.5
3

39
.4
5

38
.5
3

43
.1
2

37
.6
1

36
.7

41
.2
8

40
.3
7

40
.2
7

7
at
t.-

s
44

.0
4

40
.3
7

39
.4
5

39
.4
5

35
.7
8

43
.1
2

40
.3
7

39
.4
5

41
.2
8

42
.2

40
.5
5

8
at
t.-

s
36

.7
43

.1
2

40
.3
7

41
.2
8

38
.5
3

43
.1
2

42
.2

37
.6
1

36
.7

42
.2

40
.1
8

9
at
t.-

s
39

.4
5

44
.0
4

38
.5
3

37
.6
1

38
.5
3

40
.3
7

42
.2

42
.2

42
.2

42
.2

40
.7
3

10
at
t.-

s
35

.7
8

38
.5
3

40
.3
7

41
.2
8

43
.1
2

39
.4
5

39
.4
5

40
.3
7

40
.3
7

39
.4
5

39
.8
2

Ta
bl
e
A.

2:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
2.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s4

4.
95

%
.

61

D
at
a
Se

t
3

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

49
.6
2

53
.4
4

48
.8
5

52
.6
7

48
.0
9

49
.6
2

48
.0
9

48
.8
5

48
.8
5

48
.0
9

49
.6
2

2
at
t.-

s
48

.8
5

53
.4
4

48
.8
5

52
.6
7

49
.6
2

50
.3
8

49
.6
2

51
.1
5

48
.8
5

50
.3
8

50
.3
8

3
at
t.-

s
51

.9
1

52
.6
7

47
.3
3

49
.6
2

49
.6
2

50
.3
8

48
.0
9

49
.6
2

48
.8
5

50
.3
8

49
.8
5

4
at
t.-

s
51

.9
1

46
.5
6

50
.3
8

51
.9
1

50
.3
8

53
.4
4

50
.3
8

50
.3
8

50
.3
8

50
.3
8

50
.6
1

5
at
t.-

s
48

.0
9

48
.8
5

50
.3
8

54
.9
6

48
.8
5

48
.0
9

51
.9
1

47
.3
3

47
.3
3

48
.8
5

49
.4
7

6
at
t.-

s
50

.3
8

49
.6
2

48
.0
9

48
.8
5

51
.1
5

48
.8
5

50
.3
8

49
.6
2

50
.3
8

47
.3
3

49
.4
7

7
at
t.-

s
48

.8
5

47
.3
3

53
.4
4

48
.0
9

51
.9
1

50
.3
8

51
.9
1

51
.1
5

49
.6
2

54
.9
6

50
.7
6

8
at
t.-

s
48

.8
5

51
.1
5

47
.3
3

49
.6
2

49
.6
2

49
.6
2

50
.3
8

47
.3
3

47
.3
3

51
.1
5

49
.2
4

9
at
t.-

s
49

.6
2

50
.3
8

50
.3
8

48
.0
9

48
.8
5

48
.0
9

50
.3
8

48
.0
9

49
.6
2

51
.1
5

49
.4
7

10
at
t.-

s
51

.1
5

48
.8
5

50
.3
8

47
.3
3

48
.8
5

51
.9
1

49
.6
2

51
.9
1

51
.1
5

45
.8

49
.6
9

Ta
bl
e
A.

3:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
3.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s5

4.
96

%
.

62

D
at
a
Se

t
4

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

49
.6
2

51
.1
5

48
.8
5

47
.3
3

46
.5
6

45
.8

47
.3
3

47
.3
3

47
.3
3

49
.6
2

48
.0
9

2
at
t.-

s
46

.5
6

45
.8

47
.3
3

47
.3
3

48
.0
9

47
.3
3

48
.8
5

48
.0
9

48
.0
9

48
.8
5

47
.6
3

3
at
t.-

s
47

.3
3

48
.8
5

49
.6
2

48
.0
9

51
.9
1

45
.8

49
.6
2

47
.3
3

48
.0
9

46
.5
6

48
.3
2

4
at
t.-

s
51

.9
1

50
.3
8

50
.3
8

51
.1
5

49
.6
2

50
.3
8

46
.5
6

48
.0
9

49
.6
2

49
.6
2

49
.7
7

5
at
t.-

s
48

.8
5

48
.8
5

48
.8
5

50
.3
8

47
.3
3

49
.6
2

48
.0
9

46
.5
6

52
.6
7

48
.0
9

48
.9
3

6
at
t.-

s
48

.8
5

48
.0
9

51
.1
5

49
.6
2

44
.2
7

45
.8

45
.8

47
.3
3

48
.8
5

52
.6
7

48
.2
4

7
at
t.-

s
45

.8
48

.0
9

47
.3
3

48
.8
5

48
.8
5

49
.6
2

51
.9
1

50
.3
8

49
.6
2

49
.6
2

49
.0
1

8
at
t.-

s
49

.6
2

48
.8
5

48
.0
9

47
.3
3

46
.5
6

49
.6
2

47
.3
3

47
.3
3

47
.3
3

48
.8
5

48
.0
9

9
at
t.-

s
47

.3
3

45
.0
4

48
.8
5

48
.0
9

52
.6
7

48
.8
5

49
.6
2

50
.3
8

49
.6
2

48
.8
5

48
.9
3

10
at
t.-

s
49

.6
2

50
.3
8

45
.8

45
.0
4

50
.3
8

48
.0
9

50
.3
8

49
.6
2

46
.5
6

48
.0
9

48
.4

Ta
bl
e
A.

4:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
4.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s5

2.
67

%
.

63

D
at
a
Se

t
5

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

41
.5
1

41
.5
1

44
.3
4

42
.4
5

44
.3
4

44
.3
4

44
.3
4

41
.5
1

44
.3
4

41
.5
1

43
.0
2

2
at
t.-

s
45

.2
8

44
.3
4

45
.2
8

45
.2
8

41
.5
1

39
.6
2

42
.4
5

44
.3
4

41
.5
1

41
.5
1

43
.1
1

3
at
t.-

s
43

.4
44

.3
4

42
.4
5

44
.3
4

40
.5
7

44
.3
4

41
.5
1

46
.2
3

42
.4
5

44
.3
4

43
.4

4
at
t.-

s
45

.2
8

43
.4

45
.2
8

47
.1
7

43
.4

42
.4
5

43
.4

46
.2
3

40
.5
7

41
.5
1

43
.8
7

5
at
t.-

s
42

.4
5

45
.2
8

39
.6
2

46
.2
3

45
.2
8

47
.1
7

42
.4
5

45
.2
8

44
.3
4

45
.2
8

44
.3
4

6
at
t.-

s
44

.3
4

44
.3
4

44
.3
4

45
.2
8

42
.4
5

46
.2
3

43
.4

45
.2
8

43
.4

37
.7
4

43
.6
8

7
at
t.-

s
43

.4
38

.6
8

44
.3
4

46
.2
3

41
.5
1

40
.5
7

43
.4

43
.4

45
.2
8

45
.2
8

43
.2
1

8
at
t.-

s
43

.4
41

.5
1

46
.2
3

43
.4

44
.3
4

43
.4

42
.4
5

48
.1
1

45
.2
8

48
.1
1

44
.6
2

9
at
t.-

s
42

.4
5

45
.2
8

40
.5
7

41
.5
1

41
.5
1

44
.3
4

42
.4
5

46
.2
3

47
.1
7

44
.3
4

43
.5
8

10
at
t.-

s
44

.3
4

41
.5
1

45
.2
8

46
.2
3

44
.3
4

43
.4

48
.1
1

44
.3
4

42
.4
5

39
.6
2

43
.9
6

Ta
bl
e
A.

5:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
5.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s4

8.
11

%
.

64

D
at
a
Se

t
6

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

40
.5
7

39
.6
2

44
.3
4

42
.4
5

43
.4

46
.2
3

45
.2
8

45
.2
8

39
.6
2

43
.4

43
.0
2

2
at
t.-

s
43

.4
40

.5
7

40
.5
7

39
.6
2

37
.7
4

37
.7
4

47
.1
7

44
.3
4

43
.4

40
.5
7

41
.5
1

3
at
t.-

s
40

.5
7

45
.2
8

42
.4
5

41
.5
1

43
.4

35
.8
5

36
.7
9

44
.3
4

43
.4

45
.2
8

41
.8
9

4
at
t.-

s
41

.5
1

38
.6
8

35
.8
5

41
.5
1

43
.4

39
.6
2

39
.6
2

42
.4
5

36
.7
9

40
.5
7

40
5
at
t.-

s
47

.1
7

43
.4

39
.6
2

40
.5
7

42
.4
5

41
.5
1

38
.6
8

42
.4
5

40
.5
7

38
.6
8

41
.5
1

6
at
t.-

s
40

.5
7

38
.6
8

41
.5
1

38
.6
8

42
.4
5

35
.8
5

44
.3
4

42
.4
5

39
.6
2

41
.5
1

40
.5
7

7
at
t.-

s
43

.4
40

.5
7

44
.3
4

37
.7
4

38
.6
8

34
.9
1

40
.5
7

42
.4
5

44
.3
4

41
.5
1

40
.8
5

8
at
t.-

s
39

.6
2

43
.4

43
.4

43
.4

41
.5
1

43
.4

40
.5
7

43
.4

36
.7
9

39
.6
2

41
.5
1

9
at
t.-

s
41

.5
1

41
.5
1

41
.5
1

38
.6
8

43
.4

45
.2
8

43
.4

40
.5
7

43
.4

41
.5
1

42
.0
8

10
at
t.-

s
39

.6
2

40
.5
7

38
.6
8

34
.9
1

36
.7
9

45
.2
8

41
.5
1

40
.5
7

40
.5
7

39
.6
2

39
.8
1

Ta
bl
e
A.

6:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
6.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s4

7.
17

%
.

65

D
at
a
Se

t
7

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

50
50

48
.4
4

46
.0
9

49
.2
2

48
.4
4

49
.2
2

51
.5
6

52
.3
4

47
.6
6

49
.3

2
at
t.-

s
53

.1
3

52
.3
4

53
.1
3

50
.7
8

48
.4
4

47
.6
6

48
.4
4

51
.5
6

48
.4
4

46
.8
8

50
.0
8

3
at
t.-

s
55

.4
7

49
.2
2

50
50

.7
8

45
.3
1

49
.2
2

52
.3
4

48
.4
4

48
.4
4

46
.8
8

49
.6
1

4
at
t.-

s
53

.1
3

47
.6
6

50
52

.3
4

47
.6
6

44
.5
3

53
.9
1

50
47

.6
6

51
.5
6

49
.8
4

5
at
t.-

s
50

.7
8

50
45

.3
1

53
.1
3

46
.8
8

52
.3
4

52
.3
4

46
.8
8

50
.7
8

52
.3
4

50
.0
8

6
at
t.-

s
50

.7
8

49
.2
2

50
.7
8

53
.9
1

52
.3
4

48
.4
4

42
.9
7

52
.3
4

48
.4
4

46
.0
9

49
.5
3

7
at
t.-

s
48

.4
4

50
53

.1
3

50
.7
8

51
.5
6

53
.9
1

53
.1
3

49
.2
2

50
53

.1
3

51
.3
3

8
at
t.-

s
51

.5
6

48
.4
4

50
53

.9
1

52
.3
4

55
.4
7

49
.2
2

53
.1
3

55
.4
7

53
.1
3

52
.2
7

9
at
t.-

s
53

.1
3

50
50

52
.3
4

49
.2
2

52
.3
4

52
.3
4

48
.4
4

54
.6
9

46
.8
8

50
.9
4

10
at
t.-

s
53

.1
3

48
.4
4

50
48

.4
4

51
.5
6

50
.7
8

48
.4
4

50
.7
8

46
.8
8

52
.3
4

50
.0
8

Ta
bl
e
A.

7:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
7.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s5

5.
47

%
.

66

D
at
a
Se

t
8

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

48
.4
4

46
.0
9

47
.6
6

46
.0
9

45
.3
1

46
.0
9

46
.8
8

46
.8
8

47
.6
6

52
.3
4

47
.3
4

2
at
t.-

s
49

.2
2

43
.7
5

45
.3
1

46
.0
9

44
.5
3

46
.0
9

46
.8
8

49
.2
2

46
.8
8

49
.2
2

46
.7
2

3
at
t.-

s
46

.8
8

50
.7
8

47
.6
6

45
.3
1

46
.8
8

47
.6
6

50
.7
8

46
.8
8

43
.7
5

44
.5
3

47
.1
1

4
at
t.-

s
46

.8
8

47
.6
6

49
.2
2

46
.8
8

49
.2
2

43
.7
5

44
.5
3

48
.4
4

48
.4
4

47
.6
6

47
.2
7

5
at
t.-

s
47

.6
6

44
.5
3

46
.0
9

47
.6
6

46
.0
9

46
.8
8

45
.3
1

46
.8
8

42
.9
7

47
.6
6

46
.1
7

6
at
t.-

s
45

.3
1

47
.6
6

46
.0
9

42
.1
9

47
.6
6

46
.0
9

45
.3
1

50
45

.3
1

48
.4
4

46
.4
1

7
at
t.-

s
47

.6
6

46
.8
8

45
.3
1

49
.2
2

45
.3
1

45
.3
1

48
.4
4

46
.0
9

42
.9
7

50
46

.7
2

8
at
t.-

s
46

.8
8

50
.7
8

48
.4
4

42
.1
9

43
.7
5

45
.3
1

44
.5
3

52
.3
4

46
.8
8

46
.0
9

46
.7
2

9
at
t.-

s
47

.6
6

46
.0
9

38
.2
8

46
.8
8

46
.0
9

46
.8
8

42
.9
7

44
.5
3

45
.3
1

48
.4
4

45
.3
1

10
at
t.-

s
46

.8
8

46
.0
9

49
.2
2

46
.8
8

44
.5
3

42
.9
7

46
.0
9

47
.6
6

42
.1
9

44
.5
3

45
.7

Ta
bl
e
A.

8:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
8.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s5

2.
34

%
.

67

D
at
a
Se

t
9

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

44
.7
6

42
.8
6

42
.8
6

46
.6
7

46
.6
7

45
.7
1

45
.7
1

41
.9

41
.9

40
43

.9
2
at
t.-

s
48

.5
7

46
.6
7

47
.6
2

42
.8
6

45
.7
1

44
.7
6

49
.5
2

48
.5
7

43
.8
1

41
.9

46
3
at
t.-

s
41

.9
40

.9
5

41
.9

44
.7
6

46
.6
7

43
.8
1

46
.6
7

43
.8
1

47
.6
2

44
.7
6

44
.2
9

4
at
t.-

s
44

.7
6

43
.8
1

44
.7
6

44
.7
6

39
.0
5

42
.8
6

43
.8
1

40
.9
5

43
.8
1

44
.7
6

43
.3
3

5
at
t.-

s
44

.7
6

43
.8
1

40
.9
5

42
.8
6

47
.6
2

44
.7
6

42
.8
6

45
.7
1

43
.8
1

46
.6
7

44
.3
8

6
at
t.-

s
43

.8
1

43
.8
1

46
.6
7

40
40

.9
5

42
.8
6

42
.8
6

45
.7
1

40
44

.7
6

43
.1
4

7
at
t.-

s
42

.8
6

40
41

.9
46

.6
7

40
44

.7
6

44
.7
6

40
.9
5

37
.1
4

44
.7
6

42
.3
8

8
at
t.-

s
47

.6
2

38
.1

44
.7
6

42
.8
6

42
.8
6

41
.9

43
.8
1

44
.7
6

47
.6
2

47
.6
2

44
.1
9

9
at
t.-

s
40

.9
5

42
.8
6

45
.7
1

43
.8
1

47
.6
2

37
.1
4

43
.8
1

44
.7
6

44
.7
6

44
.7
6

43
.6
2

10
at
t.-

s
40

41
.9

50
.4
8

43
.8
1

38
.1

47
.6
2

40
43

.8
1

40
42

.8
6

42
.8
6

Ta
bl
e
A.

9:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n

ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
9.

Ea
ch

ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s5

0.
48

%
.

68

D
at
a
Se

t
10

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

41
.9

41
.9

41
.9

39
.0
5

42
.8
6

41
.9

40
.9
5

41
.9

40
39

.0
5

41
.1
4

2
at
t.-

s
40

40
.9
5

42
.8
6

44
.7
6

40
.9
5

40
.9
5

43
.8
1

42
.8
6

43
.8
1

43
.8
1

42
.4
8

3
at
t.-

s
45

.7
1

43
.8
1

43
.8
1

42
.8
6

40
41

.9
40

40
.9
5

43
.8
1

38
.1

42
.1

4
at
t.-

s
34

.2
9

40
.9
5

41
.9

45
.7
1

40
38

.1
40

37
.1
4

41
.9

43
.8
1

40
.3
8

5
at
t.-

s
42

.8
6

43
.8
1

39
.0
5

40
34

.2
9

41
.9

38
.1

39
.0
5

39
.0
5

39
.0
5

39
.7
1

6
at
t.-

s
41

.9
39

.0
5

37
.1
4

40
.9
5

37
.1
4

38
.1

40
32

.3
8

39
.0
5

38
.1

38
.3
8

7
at
t.-

s
40

45
.7
1

37
.1
4

35
.2
4

38
.1

41
.9

36
.1
9

36
.1
9

36
.1
9

37
.1
4

38
.3
8

8
at
t.-

s
36

.1
9

40
.9
5

41
.9

38
.1

40
.9
5

40
.9
5

43
.8
1

40
43

.8
1

32
.3
8

39
.9

9
at
t.-

s
37

.1
4

40
40

.9
5

39
.0
5

41
.9

37
.1
4

35
.2
4

38
.1

40
37

.1
4

38
.6
7

10
at
t.-

s
39

.0
5

40
37

.1
4

40
36

.1
9

40
41

.9
37

.1
4

38
.1

42
.8
6

39
.2
4

Ta
bl
e
A.

10
:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n
ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
10

.
Ea

ch
ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s4

5.
71

%
.

69

D
at
a
Se

t
11

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

48
.4
4

48
.4
4

49
.2
2

50
48

.4
4

53
.1
3

51
.5
6

50
51

.5
6

49
.2
2

50
2
at
t.-

s
50

.7
8

48
.4
4

47
.6
6

50
.7
8

46
.8
8

50
.7
8

53
.9
1

50
.7
8

55
.4
7

50
50

.5
5

3
at
t.-

s
50

53
.1
3

50
.7
8

46
.8
8

46
.0
9

51
.5
6

50
.7
8

49
.2
2

52
.3
4

52
.3
4

50
.3
1

4
at
t.-

s
49

.2
2

50
50

.7
8

52
.3
4

44
.5
3

50
53

.1
3

50
.7
8

50
.7
8

50
50

.1
6

5
at
t.-

s
52

.3
4

50
50

46
.8
8

50
50

.7
8

50
53

.9
1

50
.7
8

50
50

.4
7

6
at
t.-

s
50

.7
8

50
.7
8

50
.7
8

50
.7
8

48
.4
4

49
.2
2

50
.7
8

49
.2
2

50
.7
8

50
.7
8

50
.2
3

7
at
t.-

s
52

.3
4

48
.4
4

48
.4
4

50
50

.7
8

52
.3
4

48
.4
4

50
49

.2
2

54
.6
9

50
.4
7

8
at
t.-

s
51

.5
6

49
.2
2

52
.3
4

51
.5
6

51
.5
6

50
53

.1
3

48
.4
4

47
.6
6

50
.7
8

50
.6
3

9
at
t.-

s
50

.7
8

51
.5
6

50
.7
8

51
.5
6

50
.7
8

53
.9
1

49
.2
2

51
.5
6

50
.7
8

48
.4
4

50
.9
4

10
at
t.-

s
50

.7
8

53
.1
3

46
.8
8

53
.1
3

50
.7
8

49
.2
2

49
.2
2

50
53

.1
3

50
.7
8

50
.7

Ta
bl
e
A.

11
:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n
ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
11

.
Ea

ch
ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s5

5.
47

%
.

70

D
at
a
Se

t
12

1
2

3
4

5
6

7
8

9
10

Av
er
ag
e

1
at
t.

45
.3
1

44
.5
3

48
.4
4

49
.2
2

46
.8
8

45
.3
1

48
.4
4

49
.2
2

50
46

.0
9

47
.3
4

2
at
t.-

s
50

46
.8
8

46
.0
9

47
.6
6

49
.2
2

46
.0
9

50
.7
8

44
.5
3

46
.0
9

43
.7
5

47
.1
1

3
at
t.-

s
42

.1
9

47
.6
6

44
.5
3

48
.4
4

46
.8
8

45
.3
1

46
.0
9

50
47

.6
6

46
.0
9

46
.4
8

4
at
t.-

s
40

.6
3

48
.4
4

47
.6
6

47
.6
6

44
.5
3

46
.0
9

50
46

.0
9

44
.5
3

45
.3
1

46
.0
9

5
at
t.-

s
50

42
.1
9

49
.2
2

46
.0
9

45
.3
1

46
.0
9

41
.4
1

46
.8
8

46
.8
8

46
.0
9

46
.0
2

6
at
t.-

s
44

.5
3

48
.4
4

40
.6
3

45
.3
1

44
.5
3

40
.6
3

46
.8
8

45
.3
1

44
.5
3

48
.4
4

44
.9
2

7
at
t.-

s
48

.4
4

46
.8
8

46
.8
8

42
.9
7

43
.7
5

47
.6
6

43
.7
5

48
.4
4

48
.4
4

50
.7
8

46
.8

8
at
t.-

s
44

.5
3

46
.8
8

43
.7
5

45
.3
1

48
.4
4

50
.7
8

48
.4
4

44
.5
3

50
42

.9
7

46
.5
6

9
at
t.-

s
46

.0
9

49
.2
2

47
.6
6

46
.8
8

47
.6
6

50
.7
8

42
.1
9

46
.8
8

49
.2
2

45
.3
1

47
.1
9

10
at
t.-

s
45

.3
1

46
.0
9

48
.4
4

46
.8
8

46
.0
9

43
.7
5

46
.0
9

49
.2
2

42
.9
7

42
.1
9

45
.7

Ta
bl
e
A.

12
:
Pe

rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n
ty
pe

s
fo
r
th
e
da

ta
se
t
nu

m
be

r
12

.
Ea

ch
ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
ef

or
th
e�

nu
m
be

ro
fr
an

do
m
ly

se
lec

te
d
at
tr
ib
ut
es
�p

ar
am

et
er

of
th
er

an
do

m
fo
re
st

cla
ss
i�
er
.F

or
ea
ch

va
lu
e
of

th
e
pa

ra
m
et
er

10
ex
pe

rim
en
ts

we
re

pe
rfo

rm
ed

�
ea
ch

co
lu
m
n
is
a
re
su
lt
of

on
e

su
ch

ex
pe

rim
en
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s5

0.
78

%
.

71

Attributes 1 vs 2 3 vs 4 5 vs 6 7 vs 8 9 vs 10 11 vs 12
1 1.47 1.53 0 1.95 2.76 2.66
2 3.67 2.75 1.6 3.36 3.52 3.44
3 2.39 1.53 1.51 2.5 2.19 3.83
4 1.56 0.84 3.87 2.58 2.95 4.06
5 2.75 0.53 2.83 3.91 4.67 4.45
6 3.4 1.22 3.11 3.13 4.76 5.31
7 3.67 1.76 2.36 4.61 4 3.67
8 3.39 1.15 3.11 5.55 4.29 4.06
9 2.75 0.53 1.51 5.63 4.95 3.75
10 2.75 1.3 4.15 4.38 3.62 5

Average 2.78 1.31 2.41 3.76 3.77 4.02
Median 2.75 1.26 2.59 3.63 3.81 3.95

Table A.13: Comparison of the prediction accuracy between the data
sets containing both source code and contribution metrics (data sets
1, 3, 5, 7, 9, 11) and the data sets containing only source code metrics (data
sets 2, 4, 6, 8, 10, 12). Each row represents a di�erent value for the �number
of randomly selected attributes� parameter of the random forest classi�er.
Each column � a di�erence between two data sets.

72

Attributes 1 vs 3 2 vs 4 5 vs 7 6 vs 8 9 vs 11 10 vs 12
1 5.58 5.52 6.28 4.32 6.1 6.2
2 6.16 7.08 6.96 5.21 4.55 4.63
3 5.9 6.76 6.21 5.22 6.03 4.39
4 6.85 7.57 5.98 7.27 6.82 5.71
5 5.89 8.11 5.74 4.66 6.09 6.3
6 5.79 7.97 5.85 5.84 7.09 6.54
7 6.54 8.46 8.12 5.87 8.09 8.42
8 5.66 7.91 7.64 5.21 6.43 6.66
9 5.98 8.2 7.35 3.24 7.32 8.52
10 7.13 8.58 6.12 5.89 7.85 6.47

Average 6.15 7.62 6.63 5.27 6.64 6.38
Median 5.94 7.94 6.25 5.22 6.63 6.38

Table A.14: Comparison of the prediction accuracy between the data sets
that take into account only modi�cations with �delta values of LOC, NCSS
or NPC > 9� (Condition 4.1, data sets 1, 2, 5, 6, 9, 10) and the data sets
containing all modi�cations (data sets 3, 4, 7, 8, 11, 12). Each row represents
a di�erent value for the �number of randomly selected attributes� parameter
of the random forest classi�er. Each column � a di�erence between two data
sets.

73

Appendix B

Prediction Results for the
Approach 2

This appendix contains the results of prediction described in Section 4.5.
Modi�cations were classi�ed separately. The most frequent type of the mod-
i�cations belonging to the same contribution was taken as the contribution
type.

74

`
`

`
`

`
`

`
`

`
`

`
`

`
`

`
`

A
tt
rib

ut
es

D
at
a
Se

ts
1

2
3

4
5

6
7

8
9

10
11

12

1
41

.2
8

21
.1

43
.5
1

-
41

.5
1

19
.8
1

44
.5
3

-
41

.9
18

.1
43

.7
5

-
2

37
.6
1

17
.4
3

41
.2
2

-
42

.4
5

19
.8
1

42
.1
9

-
38

.1
18

.1
41

.4
1

-
3

40
.3
7

18
.3
5

38
.1
7

-
41

.5
1

16
.9
8

40
.6
3

-
38

.1
19

.0
5

40
.6
3

-
4

39
.4
5

20
.1
8

36
.6
4

-
44

.3
4

16
.9
8

39
.0
6

-
40

.9
5

20
39

.8
4

-
5

38
.5
3

21
.1

36
.6
4

-
42

.4
5

21
.7

40
.6
3

-
40

19
.0
5

42
.1
9

-

Ta
bl
e
B.
1:

Pe
rc
en
ta
ge

of
co
rr
ec
tly

pr
ed

ict
ed

co
nt
rib

ut
io
n
ty
pe

s
fo
r
al
ld

at
a
se
ts
.
Ea

ch
ro
w

re
pr
es
en
ts

a
di
�e

re
nt

va
lu
e
fo
r
th
e
�n
um

be
r
of

ra
nd

om
ly

se
lec

te
d
at
tr
ib
ut
es
�
pa

ra
m
et
er

of
th
e
ra
nd

om
fo
re
st

cla
ss
i�
er
.

Ea
ch

co
lu
m
n
�

a
di
�e

re
nt

da
ta

se
t.

Th
e
pe

ak
ac
cu

ra
cy

wa
s

44
.5

3%
.
Th

e
ra
nd

om
fo
re
st

cla
ss
i�
er

wa
sn
't

ab
le

to
bu

ilt
a
ty
pe

pr
ed

ict
io
n
m
od

el
fo
rt

he
da

ta
se
ts

4,
8,

12

75

Attributes 1 vs 2 5 vs 6 9 vs 10
1 20.18 21.7 23.8
2 20.18 22.64 20
3 22.02 24.53 19.05
4 19.27 27.36 20.95
5 17.43 20.75 20.95

Average 19.82 23.4 20.95
Median 20.18 22.64 20.95

Table B.2: Comparison of the prediction accuracy between the data sets con-
taining both source code and contribution metrics (data sets 1, 5, 9) and the
data sets containing only source code metrics (data sets 2, 6, 10). Each row
represents a di�erent value for the �number of randomly selected attributes�
parameter of the random forest classi�er. Each column � a di�erence be-
tween two data sets. Comparisons that include data sets 4, 8, 12 are missing
because random forest classi�er wasn't able to built a type prediction for
them.

76

Attributes 1 vs 3 5 vs 7 9 vs 11
1 -2.23 -3.02 -1.85
2 -3.61 0.26 -3.31
3 2.2 0.88 -2.53
4 2.81 5.28 1.11
5 1.89 1.82 -2.19

Average 0.21 1.04 -1.75
Median 1.89 0.88 -2.19

Table B.3: Comparison of the prediction accuracy between the data sets
that take into account only modi�cations with �delta values of LOC, NCSS
or NPC > 9� (Condition 4.1, data sets 1, 5, 9) and the data sets containing
all modi�cations (data sets 3, 7, 11). Each row represents a di�erent value for
the �number of randomly selected attributes� parameter of the random forest
classi�er. Each column � a di�erence between two data sets. Comparisons
that include data sets 4, 8, 12 are missing because random forest classi�er
wasn't able to built a type prediction for them.

77

