Influence of porosity of the carbide-derived carbon on the properties of the composite electrocatalysts and characteristics of polymer electrolyte fuel cells

Date

2016-12-19

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Polümeerelektrolüütmembraan (PEM) kütuseelement on seade, mis toodab elektrit kütuse ja oksüdeerija vahelise elektrokeemilise reaktsiooni käigus vabaneva energia arvelt. Kuna PEM kütuseelemendid töötavad võrdlemisi madalal temperatuuril (ca 80 °C), siis on seda võimalik kiiresti käivitada ning kasutada lisaks statsionaarsetele lahendustele ka portatiivsetes rakendustes nagu näiteks elektriauto. PEM kütuseelemendi efektiivsust piirab hapniku elektroredutseerumise reaktsiooni suur ülepinge katoodil, seega töötatakse tänapäeval välja palju uudseid katalüsaatorimaterjale, mis seda reaktsiooni kiirendavad. Enimkasutatud PEM kütuseelemendi elektroodimaterjal on plaatina nanoosakestega aktiveeritud suure eripinnaga süsinik. Antud töös uuriti erinevatest karbiididest sünteesitud süsinikmaterjalide sobivust PEM kütuseelemendi rakenduses ning võrreldi tulemusi kommertsiaalse süsinikmaterjaliga. Erinevate omadustega süsinikmaterjale sünteesiti karbiidide WC ja Mo2C kõrgtemperatuurse kloreerimise käigus kindlatel temperatuuridel vahemikus 600 kuni 1100 °C. Antud süsinikmaterjalid on kõik suure eripinnaga, kuid erinevad üksteisest kristallilisuse ning pooride suuruse jaotuse poolest. Süsinikmaterjalidele sadestati plaatina nanoosakesed naatrium-boorhüdriidiga redutseerimise meetodil. Erinevate füüsikaliste karakteriseerimise meetoditega määrati plaatinaosakeste suurus ning osakaal, materjali kristallilisus ning eripind ja pooride suuruse jaotus. Hapniku elektroredutseerumise kineetikat uuriti kolmeelektroodses süsteemis väävelhappe vesilahuses, kus klaassüsinikust elektroodile oli kantud kas süsinikust katalüsaatorikandja või plaatinaga aktiveeritud katalüsaatormaterjal. Leiti, et grafitiseerituse astmel (defektide hulgal) ning mikro- ja mesopooride ruumalade suhtel (st. pooride suurusjaotusel) on suur mõju hapniku elektroredutseerumise ülepingele. Kütuseelemendi membraanelektroodide süsteemi (membrane electrode assembly, lühend MEA) valmistamiseks kasutati Mo2C-st temperatuurivahemikus 600 kuni 1000 °C sünteesitud süsinikmaterjale ning kommertsiaalset süsinikku Vulcan XC72. Leiti, et Mo2C-st sünteesitud süsinikmaterjalid on sobivad katalüsaatori kandjad nii anoodi kui ka katoodi jaoks (sünteesitud vahemikus 600 kuni 850 °C), kuna just nendel materjalidel on lisaks kõrgele eripinnale ka sobilik poorijaotus ning grafitiseerituse aste. Võrreldes laialdaselt kasutatud kommertsiaalse süsinikmaterjaliga on karbiidsete süsinike baasil võimalik valmistada suurema efektiivsusega ning ajalise stabiilsusega PEM kütuseelemente, kuna nende materjalide füüsikalised ning elektrokeemilised omadused on antud rakenduses sobilikumad.
Polymer electrolyte membrane fuel cells (PEMFCs) are regarded as a promising alternative energy conversion devices for both mobile and stationary applications. These environmentally clean cells generate water, heat, and electricity via an electrochemical reaction with hydrogen as a fuel and oxygen in the air as an oxidant. Due to relatively high efficiency, low operating temperature and quick start-up time, PEMFCs are mostly used in automotive applications and in residential co-generation systems. Main problem hindering the wide-scale commercialization of PEMFCs is high overpotential for oxygen electroreduction reaction (ORR) at the porous cathode decreasing the efficiency of the fuel cell. Therefore, novel materials are being sought for PEMFC applications. Carbide-derived carbons (CDCs) have been synthesized from Mo2C and WC powders by high-temperature chlorination from 600 °C to 1100 °C to test suitability of catalyst supports in polymer electrolyte membrane fuel cell (PEMFC) application. Carbon supports and Pt-activated catalyst materials were tested in the H2SO4 aqueous solution in the three-electrode configuration and thereafter catalyst materials were used in the single cell measurements. Experiments in the three-electrode cell indicate that graphitization level and pore size distribution have great impact on oxygen electroreduction reaction (ORR). The synthesized CDCs are more active for the ORR and demonstrate higher kinetic current density values than commercial carbon Vulcan XC72 due to the more optimal structure of the carbon supports. Fuel cell membrane electrode assemblies were prepared and tested in polymer electrolyte membrane fuel cell (PEMFC) single cells using catalyst supports prepared from Mo2C derived carbons and commercial Vulcan XC72. Physical properties of the carbon supports like crystal structure, specific surface area and pore size distribution have great influence on the PEMFC parameters, especially on the maximum power density value. It was shown, that the mesopore volume of the cathode support material is a very important parameter due to the limitations of mass transport of O2 in the fuel cell working conditions. The results established for the Pt C(Mo2C) based electrodes were compared with those for commercial Vulcan XC72 based MEAs and more than 10% increase in power density was achieved due to the higher specific surface area and more suitable pore size distribution. Time stability test showed lower degradation for Pt-C(Mo2C)750 °C than Pt-C(Vulcan) based PEM single cell. Based on the information collected, it can be concluded that CDCs are promising catalysts support materials and Pt-nanoclusters activated CDCs can be used as the catalysts for PEMFC demonstrating suitable physical properties and therefore high efficiency and good durability.

Description

Väitekirja elektrooniline versioon ei sisalda publikatsioone.

Keywords

karbiidid, süsinikmaterjalid, poorsus, komposiitmaterjalid, katalüsaatorid, kütuseelemendid, polümeerelektrolüüdid, carbides, carbon materials, porousness, composite materials, catalysts, fuel cells, polymer electrolytes

Citation