3D printing in pharmaceutics: a new avenue for fabricating therapeutic drug delivery systems

dc.contributor.advisorLaidmäe, Ivo, juhendaja
dc.contributor.advisorKogermann, Karin, juhendaja
dc.contributor.advisorHeinämäki, Jyrki, juhendaja
dc.contributor.authorViidik, Laura
dc.contributor.otherTartu Ülikool. Meditsiiniteaduste valdkondet
dc.date.accessioned2022-02-10T14:37:02Z
dc.date.available2022-02-10T14:37:02Z
dc.date.issued2022-02-10
dc.descriptionVäitekirja elektrooniline versioon ei sisalda publikatsiooneet
dc.description.abstractPersonaal- ehk täppismeditsiini abil soovitakse haiguseid ennetada, diagnoosida ja ravida viisil, mis saavutaks parima tulemuse konkreetsel patsiendigrupil. Mitmekülgsete teadmiste kasutamine sobivaima raviaine, annuse ja ravimvormi valimisel aitab kaasa oodatud ravitulemuse saavutamisele. Neid teadmisi aitab rakendada kolmemõõtmeline (3D) printimine. Tegu on meetodiga, kus arvuti abil disainitud mudel ehitatakse kiht kihi haaval soovitud objektiks. Sõltuvalt kihi lisamise viisist jaguneb 3D printimine erinevateks meetoditeks. Meetodi valik aga omakorda võib seada materjalide valikule lisatingimusi. 3D printimine sai alguse 1980ndatel ning on viimastel aastatel jõudnud ka meditsiinivaldkonda. Kirjandusest leiab põhjalikke ülevaateid selle kasutamisest nt kardioloogias, hambaravis, plastilises kirurgias, bioprintimisel. Ravimitööstuses nähakse 3D printimises võimalikku abimeest personaliseeritud ravimite tootmisel. Aastal 2015 sai müügiloa esimene 3D prinditud ravim Spritam®. Doktoritöös kasutati mikroekstrusioonil ning sulatatud sadestusega modelleerimisel põhinevaid printimistehnoloogiaid. Mõlema meetodi jaoks disainiti sobilik ravi- ja abiainete kombinatsioon. Sobivateks kandurpolümeerideks osutusid polüetüleenoksiid ja polükaprolaktoon, raviaineteks indometatsiin ja teofülliin. Sarnaselt klassikalisele ravimiarendusele vajab ka uudsete tehnoloogiate kasutuselevõtt põhjalikku eeltööd, et õppida tundma kasutatavate materjalide omadusi ning võimalikke protsessi ajal toimuvaid muutuseid. Seetõttu uuritigi doktoritöös nii materjalide printimiseelseid omadusi, näiteks viskoossus, füüsikalised omadused, sobivus filamentide tootmiseks jt kui ka saadud ravimkandursüsteemi printimisjärgseid omadusi nagu raviaine vabanemine, reageerimine kuumutamisele ja kiiritamisele. Lisaks töötati välja uudne meetod pooltahkete materjalide 3D-prinditavuse hindamiseks. Töö tulemused kinnitavad, et 3D printimine on farmaatsiateaduse jaoks paljulubav abimees tulevikuravimite arendamisel.et
dc.description.abstractPrecision medicine is an approach to enhance the prevention, diagnosis, and treatment of diseases to benefit a specific group of patients. Using this knowledge to select the most suitable active pharmaceutical ingredients (APIs) and doses enables us to achieve the optimal therapeutic efficiency. Three-dimensional (3D) printing is an additive manufacturing technique that has been proposed as tool for the application of these principles. In 3D printing, previously designed model is then layer-by-layer formed into desired object. 3D printing methods differ from each other based on layer formation and can dictate additional material considerations. 3D printing has been studied since 1980s and has been widely used in medicine these previous years. In pharmaceutics, 3D printing can be seen as a possible aid for fabricating personalised drug delivery systems. In 2015 the first 3D printed medicine Spritam® was authorised. In this dissertation, micro-extrusion-based and fused deposition modelling 3D printing methods were used. Suitable active substance and excipient(s) formulations were designed for both methods. Polymers used were polyethylene oxide and polycaprolactone, active substances indomethacin and theophylline. As classical does development, so does the implementation of novel technologies need thorough knowledge of material and process characteristics. Therefore, bulk material properties such as viscosity, physical characteristics, suitability for filament extrusion etc, and final drug delivery system characteristics such as drug release, reaction to heat and radiation were studied. In addition, a novel method for evaluating the 3D printability was designed. We can conclude from the results of this work, that 3D printing promises great aid in developing novel drug delivery systems.en
dc.description.urihttps://www.ester.ee/record=b5485778
dc.identifier.isbn978-9949-03-808-4
dc.identifier.isbn978-9949-03-809-1 (pdf)
dc.identifier.issn1024-395X
dc.identifier.urihttp://hdl.handle.net/10062/76754
dc.language.isoenget
dc.relation.ispartofseriesDissertationes medicinae Universitatis Tartuensis;324
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdrug delivery systemsen
dc.subjectdrug carriersen
dc.subjectdrug designen
dc.subjectsolid drugsen
dc.subject3D printingen
dc.subjectpharmaceutical technologyen
dc.subject.otherdissertatsioonidet
dc.subject.otherETDet
dc.subject.otherdissertationset
dc.subject.otherväitekirjadet
dc.subject.otherravimite transport organismiset
dc.subject.otherravimikandjaden
dc.subject.otherravimidisainen
dc.subject.othertahked ravimvormidet
dc.subject.other3D-printimineet
dc.subject.otherfarmatseutiline tehnoloogiaet
dc.title3D printing in pharmaceutics: a new avenue for fabricating therapeutic drug delivery systemset
dc.title.alternative3D printimine farmaatsias – tee uudsete ravimkandursüsteemideniet
dc.typeThesiset

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
viidik_laura.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1 B
Format:
Item-specific license agreed upon to submission
Description: