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Introduction

A nmodel distribution is described by a mathematical ex-
pression containing free parameters which are used for fitt-
ing the empirical data. These parameters may be related in
more or less complex way with common physicil entities, e.g.,
average particle size, etc., A multiplier depending on
integral particle concentration is considered as one of the
parameters of the model distribution.

In this paper the problem of creating model distributions
will be considered without an emphasis on the physical theory
of phenomena. It is presumed that the model will be used as
a tool for the description of empirical data, and its main
oriteria of quality are the precision of Ffitting the data,
interpretational simplicity, and mathematical convenience,

.Mathematical structure makes it possible to distinguish
simple and compound model distributions. Distributions which
cannot be reduced to a sum of independently analysable compo~
nent distributions are called simple. Compound distributions
are sums of various simple distributions. The number of parm-
neters of a compound distribution is the sum of the numbers
of parameters of its component distributions. The following
theoretical considerations are general and concern both,
simple and compound distributions. However, the examples desal
only with simple digtributions,

As a rule, a nmodel distribution with a large number of
free parameters, guaranteeing a high precision of curve fitt-
ing, ie not distinguished by other criteria of quality. Prac-
tically, atmospheric physicists have been using simple models
with one (distribution a/r® of Junge) to six (Smerkalov’s
distribution [1]) parameters. For different practical tasks
there are different optimum model distributions depending on
the subset of observations, on the requirements of precision,
interpretability, and mathematical convenience. The present

paper will =study the criteria oquuality of model distribu-

tions and the application of these criteria in the comparison
of some well-known model distributions meant for the des-
cription of tropospheric aserosols. A new model distribution
(KL-distribution) will be described and investigated.
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List of symbols
Continuous distributions will be described using the fol-
lowing symbols: .
r effective, e.g. hydrodynamic, particle radius,
N(r) - concentration of particles with radii below r ,
no(r) = dN(r)/dr - function of distribution or spectrum
of zero order,
ng(r) = r°n,(r) - spectrum of the p-th order,

Ma(r) = rPn,(r)dr - (g-p)-th noment of the spectrum of the
p-th order, o.g., g-th moment of the spectrum of zero
order,

= (M /M ,)1”® - average radius of the p-th order,

- medal radius of the p-th order, n,(f}) = ngx(np(r)).

>
9 ,u"n

The most popular tool for the representation of spectra is
the function ny(r), as ny(r) = dN(r)/d(1ln r).

The model distributions considered

The present paper will investigate only those model dis-
tributions which are meant for the description of troposphe-
ric serosol spectra in wide size range. Expressions of the
function »n;(r) are presented in Table 1. For the sake of
shortness abbreviations will be used to denote distribu-

tions.

- Table 1

Model distribution for tropospheric aerosol
Abbreviation Expression No of parameters

MG ar® exp(-br®) 4

S1A ar™® exp(-br ") 4

S1B a,( /)% exp((k/s)(1-(£,/r)*)) 4

52 ar~* exp(-b/r - cr) 4

KLO 8/((2/r)F + (r/ %) 4

KL1 ai(K+L)/(L(r/rydF + K(ry/ %) 4

SHE  a(exp(-k(ir-2,1/0) N/(B +1r-81 ) 8

Table 1 does not include the log-normal distribution and
Junge's one-wing distribution a/r*, as they are used for the
description of tropospheric serosol only in a limited size

range.
An sanalysis of a model distribution usually starts with
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the study of its asymptotes, whereas, oertaiqﬁtﬂeoretical and
enpirical premises are taken into account. For instance, ac-
cording to Smoluchowski’s theory of coagulation growth of
particles in the conditions of uniform nucleation the left
asymptote (small sizes) conforms to the power law. On the
other hand, Junge’'s empirical law points to the power depen-
dence for the right asymptote.

Short comments to the distributions presented in Table 1
are as follows.

MG - well-known modified p-distribution with power asymp-
tote on the 1left strongly deviates from Junge's law on the

right wing.

S1A -~ thoroughly described and analysed in [2] by V.I.
Smirnov.

S1B - obtained from S1A by elementary transformation of

the set of parameters :
Py = (bs/K)Y", ay = af,7™* exp (~k/5). 1)

The shape of curve and fitting precision by S1A is the
sane as by S1B and both distributions are called S1. The dif-
ference between the two variants becomes evident only in the
analysis of stability. .

81 is obtained from MG by inversion of signs of the
powers. Therefore the powers in the expressions of MG and 51
are to be considered to be non-negative by definition. S1 has
a power ssymptote‘on the right wing which makes it possible
to consider S1 a=s n.genaralization of Junge’'s law.

Distributions HG and S1 as special cases of one general
distribution were defined by K.S. Shifrin ([3).

52 has been proposed by V.I. Smirnov [4] as a component of
a compound distribution.

Distributions KLO and KL1 are related to each other mimi-
larly to the relation of S1A and S1B. Their common denotation
in KL. The transformation of the set of parameters is as fol-
lows

Py = (L/BYYSRHIO gy = aLR/CRHLORR/CRYLY 0Ty (2)

L.G. Makhotkin [5] proposed the following estimate of the
average spectrum of tropospheric aerosol

r0.5

nln = T

(3
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This is a good approximation to V.A. Smerkalov’'s estimate
which has been presented in a more complicated form [1]. KL -
distribution may be regarded as a generalization of distri-
bution (3).

Model distribution SME has been introduced in [1]. The
expression of average spectrum of tropospheric aerosol pro-
posed in the presentation of SME found recognition, but there
have been no applications of the distribution itself as a

tool of curve fitting. The reason is its evident mathematical

inconvenience.

Geometric and analytioal properties of KL-model

KL-distribution has power asymptotes both on the left and
the right wing. All the parameters of the distribution have =&
simple interpretation at graphic depiction curve n;(r) in the
logarithmic coordinate grid, presented in Fig. 1.
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Fig. 1. KL-distribution. & , r, - coordinates of the

intersection point of the asymptotes,
a5, £, ~ coordinates of the maximum point,
L - ascent of the left asymptote, X - descent
of the right asymptote. The values of the para-
meters correspond to Table 2.
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Moments of distribution exist when -L < ¢ < K and are

expressed in elementary functions

My = anr,? / {(K+L) sin(nfig)}. 4

. A+L

Integral partic1§ concentration:

M, = ax / {(K+L) sin(n-f—)}, (5)

R+l
average radii:
7, = {ain(uﬁ) / sin(ui’%’—))"’rx, (8)

mnodal radii:

-1+ 1/¢R+L)
- (Lo lre) e, @

T "\k+1-p
Distribution KL1 is definite when X > 0 and L > O . The
scope of KLO is 1limited only by the condition XK + L > 0.
Practically this iz a considerable advantage of KLO as one
often has to deal with empirioal distributions which can be
well approxiwated by KL at negative values of the para-
neter L.
In atmospheric physies KL-distribution may be used in the
size range from some nanomneters to the upper limit of the
applicability of Junge’'s law.

Description of the precision of a model

The precision of a model is determined by error of fitting
of given spectra using the model. Let us describe a given
spectrum with a column vector n which consists of the values
of the function n,(r) over a finite set of radii ry, ra...
If the approximation of this spectrum with the model is » ,
then the error of the approximation is expressed by the
vector e=p-n. The mnost natural scalar measure of
approximation error is the probabilistic norm

82 = "D 1e , (8)

where D is the covariation matrix of the errors of measured
points of the spectrum curve. )

Matrix D is to be given together with the test spectrum n.
In the case of description of the precision of the model as
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such, it 1is necessary to determine the conditional standard
forn of the matrix 0. The simplest way is to presume the
independence of measurement errors of various points of the
spectrum curve and proportionality of errors to the quanti-
ties measured. The coefficient of proportionality can have an
arbitrary value. Let it be chosen so that Dy, = n;%/k, where
k is the number of the values of radii in the representation
of the spectrum. Then .

o2 = 4, (F"2) -, ®

ny

and 6 1is interpreted as a quadratic mean relative error of

approximation.

In the case of the set of ]l test-spectra, we denote the
approximation error of the J-th spectrum through &; . If the
weights of all test-spectra are the same, then the total

estinate of the error will be
1 1
E® 2 3’;21612 . (10)

This quantity is used as an "inverse" measure of the preci-
sion of the model.

Loss of measurement information in the
interpretation of measurement results

It is said that the ain of measurement is not numbers, but
understanding. The part of measurement information used in
this understanding could be called useful information while
the unused . part could be called lost information. The
cognitive role of =a model in data analysis consists in its
pover to yield meaningful interpretations of the values of
the parasmeters of the model. In a model representation the
measurement information is given by:

- values of the parameters,

- estimates of measurement errors of these values,

- estimates of correlation between measurement errors of

the values of different parameters.

A weaningful interpretation uses information given by the
values and estimates of measurement errors of the parameters,
whereas the information given by the estimates of correlation
of errors is, as a rule, lost. This is illustrated by the
example in Fig. 2.
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Fig. 2. Results of repeated
neasurements of the para-
mneters (a, b) of the same
spectrum in a bi-para-
metrical model.

Every dot in Fig. 2 depicts the results of one measurement,
the scatter of dots shows measurement errors. Fig. 2 presents
sinultaneously the ellipse of scattering at a certain confi-
dence level for a two-dimensional measurement result, and the
intervals of scattering Aa and Ab separately for every
parameter. In the interpretation of measurement results the
parameters are considered separately in accordance with their
physical content. For instance, parameter a can be the con-
centration and b - the particle mean radius. The uncertainty
of the results is described by the values Aa and Ab ,and the
information given by the narrow diagonal form of the ellipse
of scattering is lost. This is equal to the replacement of

the real ellipse of scattering in Fig. 2 by a wide ellipse

shown in Fig, 2 by the indented line. The amount of lost
information equals ’

AI = log s (11)

%z
£
where S; and S§; are the areas of the wide and the narrow
ellipse, It is easy to demonstrate that

1 1

Al = = 1lo

e 12
2 31-1?’ (12)

where R 1is the coefficient of correlation between the meas-
urement errors of the parameters a and b .

The same amount of information will be lost, if we in-
crease by K times the measurement errors of every parameter
where

K= - . (13)
The quantities AI and K are formally equivalent and in
practice the one giving a more comprehensible description of

the loss of information should be preferred.
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Description of the stability of the model

It is said that a model has a poor fitting stability if
small disturbances in the approximated spectrum cause large
disturbances in the values of the parameters guaranteeing the
best approximation. In such cases the ellipse of the scatter
of parameter values is strongly elongated, whereas its area
may be small. Therefore poor stability is accompanied by
large information loss in the interpretation of parameter
values. In computational mathematics stability is described
by the condition number of the matrix of fitting problem.
There are different definitions of the condition number. As
there is no expressive interpretation, the use of this con-
cept in our problem is limited. This paper proposes to de-
scribe the 1level of model instability by the amount of
information lost in interpretation or by the coefficient of
equivalent amplification of measurement errors which are more
expressive parameters in our problem.

To generalize the results obtained ¥in the preceding
section, let us consider a problem of fitting the apectrum
n using the model m(p), where 15 and =» are finite vectors
determined on the set of radii r; , rp , ..., and p is a
vector whose elements are the scalar parameters of the model,
The dependence of the deviation vector e = m - n on the
parameters p could be non-linear. Therefore stability is
viewed as a local property depending on the spsctrunm,

Let us study stability in the neighbourhood of the
spectrum m(p°®) which is given by certain values of para-
netars p°
bourhood of this spectrum is

Linear approximation of errors in the neigh-

e= B(p-p°), (14)
where B8 - is the Jacobi matrix whose elements

B4 =a—.1 (15)
[-¥-

are calculated in the point p°. Here the index i counts the

radii and the index J scalar parameters. The fitting problem

is reduced to the task of. minimizing the error 8% , re-

presented by formula (8) , and it is solved by the well-

-known methods of the theory of least squares. The solution

can be written as:
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C = (8D '8
— (186)
p=p°+ CB"D* (n - m(pP°))
Here € -~ the covariation matrix of parameter values if the

spectrum n varies in accordance with the covariation matrix
D.

The size of the region of scattering of parameter values
calculated by (18), is proportional to det C , which is jux-
taposed with the area of the narrow ellipse in Fig. 2 . The
interval of scattering of the j-th parameter is proportional
to C434 . If to ignore the correlations, the size of the
scattering region of the parameters will be determined by the
product ?VESS juxtaposed with the area of the wide ellipse
in Fig. 2 . The respective amount of lost information is

1 H Cya
I =1 17
A 3 og St © (17)

and the coefficient of ‘equivalent amplification of errors is

C 1/¢2n)
K= (u) , (18)

det C

where A - number of scalar parameters.

Other characteristics of the quality of a model
The most important factor of the quality of a model is the
cognitive value of its parameters. Unfortunately, there is no
way of measuring  this factor, and thus expert opinions are
decisive.
Practical use of the model depends also on its mathemati-
cal convenience. Here three aspects can be mentioned
1) analytical complexity of the model,
2) complexity and laboriousness of curve fitting using
graphic procedures and simple caleulations,
3) complexity =and lsboriousness of a more precise curve
fitting uéually done by the method of least squares.
There sare, again, no exact criteria for the description of
mathematical convenience. In this case, however, expert
opinions c¢an be supported by some procedures. To estimate
analytical complexity, it is necessary to present the ex-

pressions of the moments of distributions and characteristic

radii. To estimate complexity and laboriousness of an appro-
ximation, it is necessary to describe or point out the re-

144

spective methods and to determine the amount of computation
on a standard set of test spectra.

Test spectra for checking the precision
and stability of the model

Below in the examples of comparison of model distribution
two sets of test spectra are used. The first consists of one
spectrum

a exp(-0.42 {1 - 3Dnn/r{0.47)
0.000416 + 10~°!r/nm ~ 30!%

ny(r) = s (18)

which 1is proposed in [1] as the average spectrum of tropo-
spheric aerosols. The second consisis of 271 spectra and is
obtained as follows. A. MNirme et al. {8] recotded 1681 spec-
tra of tropospheric merosol near Zvenigorod in the summer
1988. This set has been taken as a basis. All the spectra are
presented in a seven-point grid of radii 5, B, 18, 28, 50,
89, and 158 nm, in the range of this grid the relative mea-
surement error in nearly uniform. 308 spectra turned out to
be polymodal &and were discarded. The rest wers averaged by
sets of 5 successively measured spectra. As a result, a set
of 207 spectra was obtained, whereaz most of them are
averages over time interval of about 20 min.

Comparison of the precision of model distribotions

The test spectrum (19) has exact presentation in terms of
the model SME. The error of fitting of this spectrum with
other models is described by Table 2.

Table 2
Model Approximation of spectrum (19) at Average
a=1 relative error
S1A 2.87 1018p~4-S4gxp(-36.1079-315) 3sx
51B 2660(18.4/r)* PPexp(-36.1,"9-315) 36%
82 3,06 107 r~2-%exp(-38.1/r - 0,00049r) 70%
KLO 3100/((r/72)2 1% + (72/r)0-44) 7%
KL1 2140 3.58/(0.44(r/42)>2-1% 4+ 3.15(42/r)%-%* 7%

Table 2 does not contain the model MG which in approximating
spectrum (18) 1is inferior to the model $1. The formal pro-
cedure minimizing the error of MNG-approximation approaches
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the point of inversion where the distribution is not de-
termined and will be transformed into S1.
The results of the comparison of models in the fitting of
271 empirical test spectra are presented in Table 3.
Table 3
Precision of model distributions in the fitting
of 271 empirical spectra on a 7-point logarithmic
grid of radii from 5 to 158 nm

Relative error Frequency of turning out

Model average naximum as best of compared models
MG 12X 48% 22%
S1 16X 40% 10%
s2 13% 38X 19X
KL 8% 18X 49%

In the execution of computations for Table 3 with MG the
limitations > 0.1, and with 81 = > 0.1, were set up.
Without liwmiting the polarity, the procedure of smearching the
best fit would “"step over” the inversion, and reach 51 in 1/3
of cames, and MG in 2/3 of casea. The limitation of the ab-
solute value was used to avoid losses of computational pre-
cision due to the instability of absolute values of the para-
neter below 0.1.

Comparison of the a&tability of model distributions
Stability has been studied in the neighbourhood of the

best approximations of test spectras (19) described in
Table 2. In contrast to precision (which does not change in
reversible transformationa of the set of parameters of the
nodel) atability is significantly dependent on the represen-
tation of the set. Stability is also dependent on the co-
variation matrix of the disturbances of the spectrum D.
Computations have been executed on the assumption of a dia-
Zonal structure of the wmatrix. Let us consider two variants :

- variant of a constant absolute error 4, = const,

- variant of & constant relative error Dy, = const n,%(ry).
The second varlant is closer to real situations. Computation
results are brought in Table 4.
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Table 4
Stability characteristics of the model distri-
butions in the neighbourhood of the average
spectrum of tropospheric aerosols according to
V.A. Smerkalov, computed on a 13-point loga-
rithmic grid of radii from 5 to 5000 nm.

Constant absolute error Constant relative error

Model AI:bit AI:digits K AI:bit Ar:digits £
Si4 11.7 3.5 3.8 8.9 2.7 2.8
51A 20 [} 32 12.8 3.8 8.8
S1B 4.3 1.3 2.1 4.0 1.2 2.0
51 10.0 3.0 5.8 4.7 1.4 2.2
K10 3.2 1.0 1.7 3.2 1.0 1.7
KL1 2.0 0.5 1.4 2.2 0.7 1.5

The reasons for poor stability can be studied by analysing
the structure of the Jacobi matrix. For instance, in the
case of the distribution S1A, the angle between the row
vectors, corresponding to the parameters a2 and s is below 2°.
The analysis of the structure of the Jacobi matrix also helps
to make proposals for the transformation of the set of para-
meters in order to build more stable variants of model dis-

tributions.

Comparison of computational complexity
of model distributions

Methods for the simplified fitting of spectra with the
distributions MG and S1 are described in [3] and [2], re-
spectively.

The simplified fitting using the model KLO can be carried
out graphically on a logarithmic coordinate grid (see Fig.1).
Straight linear asymptotes are easy to estimate with a
transparent ruler. On the condition of uniform relative error
the precision of this method is close to that of the numeri-
cal method of least sgquares. An additional guideline to prove
the asymptotes is the condition m(r,) = a/2. The para-
meters could be measured as is shown in Fig. 1.

For an exact approximation by the method of least squares
the models MG, 51, and 52 are considered on a logarithmic
scale, whereas $2 will be linear in reference to all para-
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neters, and MG and S1 retain non-linear dependencies on one
parameter. The model KL gets the form :

1/n3(r) = pr® + gr b, (20)

which retains a non-linear dependence on two parameters. A
necessary additional transformation is:

re = (g/p)Y/ <KL, 8z 1/prF. (21)

The spectrum is to be transformed simultaneously with the
estinates of measurement errors or the weights of points of
the spectrum by the method of least squares.

In the case of the linear parameters of the transformed
nodel, the computational procedure uses the standard linear
algorithn of the least squares method. In the oase of the
rest of the parameters, methods of the extreme problems are
to be used; this takes a considerably greater computational
effort. The productivity of an approximation of spectrs given
in 7 points was empirically determined by means of an
Ishra-228 personal ocomputer using a Basic interpreter. The
results are presented in Table 5.

Table 5

Productivity of approximation on PC Iskra-226

Kodel Spectra per min.
MG 4
81 4
52 25
KL 2

The computational complexity of SME is significantly higher
than that of the other considered models.

Conclusions

For a comparison of different model distributions it is
necessary, on the level of expert decision:

- to estimate the cognitive value of every model which is
expressed in the interpretation of parameters;

- to estimate the mathematical convenience of every model:

- to determine the set of test spectra for the calculation
of quantitative characteristics of the performance of
mnodels, )
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Characteristics of precision and stability of the model
and of laboriousness of the npproxiiation of empirioal
spectra could be determined on the level of quantitative
caloulations.

Special attention in the comparison of models should be
paid to the estimate of stability, as poor stability brings
along  not only ocomputational difficulties but, more im-
portantly, 1large 1losses of npeasurement information at the
stage of interpretation of results.

A comparison of model distributions of tropospheric aero-
sols shows that KL-distribution suggested in this paper has
the best gquantitative characteristics among the considered
models. ‘
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