PlantSoilAdapt - Evolutsioonilised muutused taimede ja mulla vahelistes interaktsioonides maakasutuse muutudes: tagajärjed mulla funktsioneerimisele ja põuakindlusele
Permanent URI for this collectionhttps://hdl.handle.net/10062/105254
Projekt uurib kuidas evolutsioonilised muutused taimede ja mulla vahelistes interaktsioonides maakasutuse muutudes mõjutavad mulla funktsioneerimist ja rohumaade põuakindlust.
Browse
Browsing PlantSoilAdapt - Evolutsioonilised muutused taimede ja mulla vahelistes interaktsioonides maakasutuse muutudes: tagajärjed mulla funktsioneerimisele ja põuakindlusele by Author "Semchenko, Marina"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A trait-based framework linking the soil metabolome to plant–soil feedbacks(2023) Delory, Benjamin M.; Callaway, Ragan M.; Semchenko, MarinaBy modifying the biotic and abiotic properties of the soil, plants create soil legacies that can affect vegetation dynamics through plant–soil feedbacks (PSF). PSF are generally attributed to reciprocal effects of plants and soil biota, but these interactions can also drive changes in the identity, diversity and abundance of soil metabolites, leading to more or less persistent soil chemical legacies whose role in mediating PSF has rarely been considered. These chemical legacies may interact with microbial or nutrient legacies to affect species coexistence. Given the ecological importance of chemical interactions between plants and other organisms, a better understanding of soil chemical legacies is needed in community ecology. In this Viewpoint, we aim to: highlight the importance of belowground chemical interactions for PSF; define and integrate soil chemical legacies into PSF research by clarifying how the soil metabolome can contribute to PSF; discuss how functional traits can help predict these plant–soil interactions; propose an experimental approach to quantify plant responses to the soil solution metabolome; and describe a testable framework relying on root economics and seed dispersal traits to predict how plant species affect the soil metabolome and how they could respond to soil chemical legacies.Item Symbiont plasticity as a driver of plant success(2024) Zobel, Martin; Koorem, Kadri; Moora, Mari; Semchenko, Marina; Davison, JohnWe discuss which plant species are likely to become winners, that is achieve the highest global abundance, in changing landscapes, and whether plant-associated microbes play a determining role. Reduction and fragmentation of natural habitats in historic landscapes have led to the emergence of patchy, hybrid landscapes, and novel landscapes where anthropogenic ecosystems prevail. In patchy landscapes, species with broad niches are favoured. Plasticity in the degree of association with symbiotic microbes may contribute to broader plant niches and optimization of symbiosis costs and benefits, by downregulating symbiosis when it is unnecessary and upregulating it when it is beneficial. Plasticity can also be expressed as the switch from one type of mutualism to another, for example from nutritive to defensive mutualism with increasing soil fertility and the associated increase in parasite load. Upon dispersal, wide mutualistic partner receptivity is another facet of symbiont plasticity that becomes beneficial, because plants are not limited by the availability of specialist partners when arriving at new locations. Thus, under conditions of global change, symbiont plasticity allows plants to optimize the activity of mutualistic relationships, potentially allowing them to become winners by maximizing geographic occupancy and local abundance.