Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Attieh, Joseph" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    A Comparative Study of PEFT Methods for Python Code Generation
    (University of Tartu Library, 2025-03) Männistö, Johanna; Attieh, Joseph; Tiedemann, Jörg; Johansson, Richard; Stymne, Sara
    Fine-tuning language models incurs high costs in training, inference and storage. Parameter-efficient fine-tuning (PEFT) methods have emerged as a more cost-effective alternative to full fine-tuning. However, limited work has compared different PEFT approaches for tasks like code generation. In this study, we examine the effect of various PEFT training methods on model performance in the task of Python code generation. We fine-tune four model families, ranging from 124M to 7B parameters, using three PEFT approaches alongside standard full fine-tuning. Our findings reveal that the effectiveness of each PEFT method varies with the model size and the corpus used.

DSpace tarkvara autoriõigus © 2002-2026 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet