Browsing by Author "Bambery, Keith R."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Extraordinary Computational Imaging Technologies with Ordinary Optical Modulators (Invited)(2022) Anand, Vijayakumar; Ng, Soon Hock; Maksimovic, Jovan; Katkus, Tomas; Han, Molong; Linklater, Denver P.; Klein, Annaleise; Bambery, Keith R.; Tobin, Mark J.; Ivanova, Elena P.; Vongsvivut, Jitraporn; Juodkazis, SauliusComputational imaging technology (CIT) has revolutionized the field of imaging. CITs based on two genres namely random and deterministic optical fields generated by common optical modulators with extraordinary imaging capabilities are discussed.Item Mid-infrared Incoherent Three-Dimensional Imaging Using Lucy-Richardson-Rosen Algorithm(Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP), 2022) Anand, Vijayakumar; Han, Molong; Maksimovic, Jovan; Hock Ng, Soon; Katkus, Tomas; Klein, Annaleise; Bambery, Keith R.; Tobin, Mark J.; Vongsvivut, Jitraporn; Juodkazis, SauliusTwo computational reconstruction methods namely the Lucy-Richardson algorithm and non-linear reconstruction have been combined to develop Lucy-Richardson-Rosen algorithm. This new algorithm has been used to convert a two-dimensional infrared spectral map into a three-dimensional image.Item Single Shot Lensless Interferenceless Phase Imaging of Biochemical Samples Using Synchrotron near Infrared Beam(Licensee MDPI, 2022) Han, Molong; Smith, Daniel; Ng, Soon Hock; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Praveen, Periyasamy Angamuthu; Bambery, Keith R.; Tobin, Mark J.; Vongsvivut, Jitraporn; Juodkazis, Saulius; Anand, VijayakumarPhase imaging of biochemical samples has been demonstrated for the first time at the Infrared Microspectroscopy (IRM) beamline of the Australian Synchrotron using the usually discarded near-IR (NIR) region of the synchrotron-IR beam. The synchrotron-IR beam at the Australian Synchrotron IRM beamline has a unique fork shaped intensity distribution as a result of the gold coated extraction mirror shape, which includes a central slit for rejection of the intense X-ray beam. The resulting beam configuration makes any imaging task challenging. For intensity imaging, the fork shaped beam is usually tightly focused to a point on the sample plane followed by a pixel-by-pixel scanning approach to record the image. In this study, a pinhole was aligned with one of the lobes of the fork shaped beam and the Airy diffraction pattern was used to illuminate biochemical samples. The diffracted light from the samples was captured using a NIR sensitive lensless camera. A rapid phase-retrieval algorithm was applied to the recorded intensity distributions to reconstruct the phase information. The preliminary results are promising to develop multimodal imaging capabilities at the IRM beamline of the Australian Synchrotron.