Sirvi Autor "Floreskul, Volodymyr" järgi
Nüüd näidatakse 1 - 1 1
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Mälusäästlik kiire ligikaudne lühima tee otsing suurtes graafides(Tartu Ülikool, 2013) Floreskul, Volodymyr; Tretyakov, Konstantin; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Arvutiteaduse instituutLühima tee otsing on üks olulisematest graafi algoritmidest. Suurte graafide korral tihti tekib vajadus kasutada selleks aga ligikaudseid meetodeid, kuna täpsed algoritmid on talumatult aeglased. Üks populaarne, lihtne, ning hästi skaleeruv ligikaudsete lühima tee otsimise meetodite pere põhineb orientiiride (landmarks) ideel. Nimelt kui ette arvutada kaugusi igast tipust x ühte väljavalitud orientir-tippu u, saab iga tipu s ja t vahelise kauguse lähendada kasutades kolmnurga võrratust: d(s,t)< = d(s,u) + d(u,t). Tulemuse täpsust saab suurendada, suurendades kasutatavate orientiirtippude arvu. Sel juhul tuleb valida k erinevat orientiiri ning arvutada ette kaugused igast tipust igasse orientiiri. Käesolevas töös me tutvustame lihtsat, kuid võimsat modifikatsiooni sellele lähenemisele, mida nimetame pügatud orientiiride puuks. Modifikatsiooni idee baseerub sellel faktil, et enamasti piisab salvestada mitte kõik kaugused sõlmest kõigesse orientiiridesse, vaid ainult r lähima orientiirini (kus r võib olla kõvasti väiksem kui k). Pakutud meetodite lähendamise täpsust ning kiirust testisime suurte sotsiaalvõrkude graafide peal: DBLP, Orkut, Twitter ja Skype. Saadud tulemused olid võrreldud traditsiooniliste orientiiridel baseeruvate algoritmite tulemustega. Võrdlus näitas, et pakutud lahendus tõepoolest lubab märgatavalt vähendada algoritmide poolt kasutatava mälu, jättes täpsust ja päringu täitmise aega suuresti samasuguseks.