Browsing by Author "Juodkazis, S."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Review of engineering techniques in chaotic coded aperture imagers(Light: Advanced Manufacturing, 2022) Anand, V.; Rosen, J.; Juodkazis, S.Coded aperture imaging (CAI) is a technique to image three-dimensional scenes with special controlled abilities. In this review, we survey several recently proposed techniques to control the parameters of CAI by engineering the aperture of the system. The prime architectures of these indirect methods of imaging are reviewed. For each design, we mention the relevant application of the CAI recorders and summarize this overview with a general perspective on this research topic.Item Roadmap on chaos-inspired imaging technologies (CI2-Tech)(Springer Nature, 2022) Rosen, Joseph; de Aguiar, H.B.; Anand, V.; Baek, Y.; Gigan, S.; Horisaki, R.; Hugonnet, H.; Juodkazis, S.; Lee, K.; Liang, H.; Liu, Y.In recent years, rapid developments in imaging concepts and computational methods have given rise to a new generation of imaging technologies based on chaos. These chaos-inspired imaging technologies (CI2-Tech) consist of two directions: non-invasive and invasive. Non-invasive imaging, a much older research direction with a goal of imaging through scattering layers, has reached faster, smarter, and sharper imaging capabilities in recent years. The invasive imaging direction is based on exploiting the chaos to achieve imaging characteristics and increase dimensionalities beyond the limits of conventional imagers. In this roadmap, the current and future challenges in invasive and non-invasive imaging technologies are presented.Item Three-Dimensional Incoherent Imaging Using Spiral Rotating Point Spread Functions Created by Double-Helix Beams [Invited](Springer Nature, 2022) Anand, V.; Khonina, S.; Kumar, R.; Dubey, N.; Reddy, A.N.K.; Rosen, J.; Juodkazis, S.In recent years, there has been a significant transformation in the field of incoherent imaging with new possibilities of compressing three-dimensional (3D) information into a two-dimensional intensity distribution without two-beam interference (TBI). Most incoherent 3D imagers without TBI are based on scattering by a random phase mask exhibiting sharp autocorrelation and low cross-correlation along the depth axis. Consequently, during reconstruction, high lateral and axial resolutions are obtained. Scattering based-Imaging requires a wasteful photon budget and is therefore precluded in many power-sensitive applications. This study develops a proof-of-concept 3D incoherent imaging method using a rotating point spread function termed 3D Incoherent Imaging with Spiral Beams (3DI2SB). The rotation speed of the point spread function (PSF) with displacement and the orbital angular momentum has been theoretically analyzed. The imaging characteristics of 3DI2SB were compared with a direct imaging system using a diffractive lens, and the proposed system exhibited a higher focal depth than the direct imaging system. Different computational reconstruction methods such as the Lucy–Richardson algorithm (LRA), non-linear reconstruction (NLR), and the Lucy–Richardson–Rosen algorithm (LRRA) were compared. While LRRA performed better than both LRA and NLR for an ideal case, NLR performed better than both under real experimental conditions. Both single plane imaging, as well as synthetic 3D imaging, were demonstrated. We believe that the proposed approach might cause a paradigm shift in the current state-of-the-art incoherent imaging, fluorescence microscopy, and astronomical imaging.Item White Light Correlation Holography Using a Random Lens for Astronomical Imaging Applications(2022 Photonics & Electromagnetics Research Symposium (PIERS), 2022) Anand, V.; Ng, S. H.; Katkus, T.; Juodkazis, S.