Browsing by Author "Juodkazis, Saulius"
Now showing 1 - 20 of 31
- Results Per Page
- Sort Options
Item 4D imaging using accelerating airy beams and nonlinear reconstruction(2023) Bleahu, Andrei; Gopinath, Shivasubramanian; Anand, Vijayakumar; Rosen, Joseph; Juodkazis, Saulius; Tamm, Aile; Kukli, Kaupo; Rajeswary, Aravind Simon John Francis; Katkus, Tomas; Pristy, Agnes; Ng, Soon Hock; Praveen, P. A.; Kahro, Tauno; Smith, Daniel; Arokiaraj, Francis Gracy; Kumar, RaviItem Coded Aperture-Based Self-wavefront Interference Using Transverse Splitting Holography(2023 International Conference on Next Generation Electronics (NEleX), 2023) Joshi, Narmada; Xavier, Agnes Pristy Ignatius; Arockiaraj, Francis Gracy; Rajeswary, Aravind Simon John Francis; Juodkazis, Saulius; Rosen, Joseph; Tamm, Aile; Anand, VijayakumarSelf-wavefront interference transverse splitting holography (SWITSH) is a recently developed holographic technique to solve a fundamental problem in the manufacturing of large-area diffractive lenses. In SWITSH, a low NA diffractive lens modulates the light from an object, and the modulated light is interfered with light from the same object that reaches beyond the aperture of the diffractive lens. The resulting self-interference hologram is processed with the pre-recorded point spread hologram using the Lucy-Richardson-Rosen algorithm. Since the self-interference hologram is formed by collecting light beyond the NA of the diffractive lens, it acquires the object information corresponding to the higher spatial frequencies of the object. Consequently, a higher imaging resolution is obtained in SWITSH compared to that of direct imaging with a diffractive lens. In the proof-of-concept study, a resolution improvement of an order was demonstrated. However, the optical architecture of the first version of SWITSH was not optimal, as the strength of the self-interference signal was weak. In this study, we improve SWITSH using different coded apertures, such as axicon and spiral element. An improvement in the strength of the self-interference signal was noticed with the axicon and spiral element. Simulation and experimental results using a diffractive lens, axicon and spiral element are presented.Item Computational Imaging at the Infrared Beamline of the Australian Synchrotron Using the Lucy–Richardson–Rosen Algorithm(2023) Ng, Soon Hock; Anand, Vijayakumar; Han, Molong; Smith, Daniel; Maksimovic, Jovan; Katkus, Tomas; Klein, Annaleise; Bambery, Keith; Tobin, Mark J.; Vongsvivut, Jitraporn; Juodkazis, SauliusThe Fourier transform infrared microspectroscopy (FTIRm) system of the Australian Synchrotron has a unique optical configuration with a peculiar beam profile consisting of two parallel lines. The beam is tightly focused using a 36× Schwarzschild objective to a point on the sample and the sample is scanned pixel by pixel to record an image of a single plane using a single pixel mercury cadmium telluride detector. A computational stitching procedure is used to obtain a 2D image of the sample. However, if the imaging condition is not satisfied, then the recorded object’s information is distorted. Unlike commonly observed blurring, the case with a Schwarzschild objective is unique, with a donut like intensity distribution with three distinct lobes. Consequently, commonly used deblurring methods are not efficient for image reconstruction. In this study, we have applied a recently developed computational reconstruction method called the Lucy–Richardson–Rosen algorithm (LRRA) in the online FTIRm system for the first time. The method involves two steps: training step and imaging step. In the training step, the point spread function (PSF) library is recorded by temporal summation of intensity patterns obtained by scanning the pinhole in the x-y directions across the path of the beam using the single pixel detector along the z direction. In the imaging step, the process is repeated for a complicated object along only a single plane. This new technique is named coded aperture scanning holography. Different types of samples, such as two pinholes; a number 3 USAF object; a cross shaped object on a barium fluoride substrate; and a silk sample are used for the demonstration of both image recovery and 3D imaging applications.Item Computational three-dimensional imaging with near infrared synchrotron beam using Fresnel zone apertures fabricated on barium fluoride windows using femtosecond laser ablation(2023) Smith, Daniel; Han, Molong; Ng, Soon Hock; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Tobin, Mark J.; Vongsvivut, Jitraporn; Juodkazis, Saulius; Anand, VijayakumarItem Deep Deconvolution of Object Information Modulated by a Refractive Lens Using Lucy-Richardson-Rosen Algorithm(2022) Praveen, P.A.; Arockiaraj, Francis Gracy; Gopinath, Shivasubramanian; Smith, Daniel; Kahro, Tauno; Valdma, Sandhra-Mirella; Bleahu, Andrei; Ng, Soon Hock; Reddy, Andra Naresh Kumar; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Ganeev, Rashid A.; Pikker, Siim; Kukli, Kaupo; Tamm, Aile; Juodkazis, Saulius; Anand, VijayakumarA refractive lens is one of the simplest, most cost-effective and easily available imaging elements. Given a spatially incoherent illumination, a refractive lens can faithfully map every object point to an image point in the sensor plane, when the object and image distances satisfy the imaging conditions. However, static imaging is limited to the depth of focus, beyond which the point-to-point mapping can only be obtained by changing either the location of the lens, object or the imaging sensor. In this study, the depth of focus of a refractive lens in static mode has been expanded using a recently developed computational reconstruction method, Lucy-Richardson-Rosen algorithm (LRRA). The imaging process consists of three steps. In the first step, point spread functions (PSFs) were recorded along different depths and stored in the computer as PSF library. In the next step, the object intensity distribution was recorded. The LRRA was then applied to deconvolve the object information from the recorded intensity distributions during the final step. The results of LRRA were compared with two well-known reconstruction methods, namely the Lucy-Richardson algorithm and non-linear reconstruction.Item Extraordinary Computational Imaging Technologies with Ordinary Optical Modulators (Invited)(2022) Anand, Vijayakumar; Ng, Soon Hock; Maksimovic, Jovan; Katkus, Tomas; Han, Molong; Linklater, Denver P.; Klein, Annaleise; Bambery, Keith R.; Tobin, Mark J.; Ivanova, Elena P.; Vongsvivut, Jitraporn; Juodkazis, SauliusComputational imaging technology (CIT) has revolutionized the field of imaging. CITs based on two genres namely random and deterministic optical fields generated by common optical modulators with extraordinary imaging capabilities are discussed.Item Fraxicon for Optical Applications with Aperture ∼1 mm: Characterisation Study(2023) Mu, Haoran; Smith, Daniel; Ng, Soon Hock; Anand, Vijayakumar; Le, Nguyen Hoai An; Dharmavarapu, Raghu; Khajehsaeidimahabadi, Zahra; Richardson, Rachael T.; Ruther, Patrick; Stoddart, Paul R.; Gricius, Henrikas; Baravykas, Tomas; Gailevicius, Darius; Seniutinas, Gediminas; Katkus, Tomas; Juodkazis, SauliusEmerging applications of optical technologies are driving the development of miniaturised light sources, which in turn require the fabrication of matching micro-optical elements with sub-1 mm cross-sections and high optical quality. This is particularly challenging for spatially constrained biomedical applications where reduced dimensionality is required, such as endoscopy, optogenetics, or optical implants. Planarisation of a lens by the Fresnel lens approach was adapted for a conical lens (axicon) and was made by direct femtosecond 780 nm/100 fs laser writing in the SZ2080™ polymer with a photo-initiator. Optical characterisation of the positive and negative fraxicons is presented. Numerical modelling of fraxicon optical performance under illumination by incoherent and spatially extended light sources is compared with the ideal case of plane-wave illumination. Considering the potential for rapid replication in soft polymers and resists, this approach holds great promise for the most demanding technological applications.Item Fresnel Incoherent Correlation Holography using Lucy-Richardson-Rosen Algorithm(Digital Holography and 3-D Imaging 2022, 2022) Balasubramani, Vinoth; Anand, Vijayakumar; Reddy, Andra Naresh Kumar; Rajeswary, Aravind Simon John Francis; Magistretti, Pierre J.; Depeursinge, Christian; Juodkazis, SauliusFresnel incoherent correlation holography (FINCH) is a super-resolution imaging method which requires at least three camera shots to image an object. In this study, we have demonstrated single-shot FINCH using a recently developed Lucy-Richardson-Rosen algorithm.Item Fresnel incoherent correlation holography with Lucy-Richardson-Rosen algorithm and modified Gerchberg-Saxton algorithm(2023) Anand, Vijayakumar; Juodkazis, Saulius; Rajeswary, Aravind Simon John Francis; Arockiaraj, Francis Gracy; Gopinath, Shivasubramanian; Bleahu, AndreiItem Fresnel incoherent correlation holography with Lucy-Richardson-Rosen algorithm and modified Gerchberg-Saxton algorithm(Society of Photo-Optical Instrumentation Engineers (SPIE), 2023) Bleahu, Andrei; Gopinath, Shivasubramanian; Arockiaraj, Francis Gracy; Rajeswary, Aravind Simon John Francis; Juodkazis, SauliusItem Holographic solution to a fundamental problem in diffractive optics: resolution beyond diffraction and lithography limits(2023) Bleahu, Andrei; Gopinath, Shivasubramanian; Xavier, Agnes Pristy Ignatius; Kahro, Tauno; Reddy, Andra Naresh Kumar; Arockiaraj, Francis Gracy; Smith, Daniel; Ng, Soon Hock; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Angamuthu, Praveen Periyasami; Pikker, Siim; Kukli, Kaupo; Tamm, Aile; Juodkazis, Saulius; Rosen, Joseph; Anand, VijayakumarItem Imaging with Diffractive Axicons Rapidly Milled on Sapphire by Femtosecond Laser Ablation(2023) Smith, Daniel; Ng, Soon Hock; Han, Molong; Katkus, Tomas; Anand, Vijayakumar; Juodkazis, SauliusWe show that single-pulse burst fabrication will produce a flatter and smoother profile of axicons milled on sapphire compared to pulse overlapped fabrication which results in a damaged and much rougher surface. The fabrication of large-area (sub-1 cm cross-section) micro-optical components in a short period of time (∼10 min) and with less processing steps is highly desirable and would be cost-effective. Our results were achieved with femtosecond laser fabrication technology which has revolutionized the field of advanced manufacturing. This study compares three configurations of axicons such as the conventional axicon, a photon sieve axicon (PSA) and a sparse PSA directly milled onto a sapphire substrate. Debris of redeposited amorphous sapphire were removed using isopropyl alcohol and potassium hydroxide. A spatially incoherent illumination was used to test the components for imaging applications. Non-linear reconstruction was used for cleaning noisy images generated by the axicons.Item Implementation of a Large-Area Diffractive Lens Using Multiple Sub-Aperture Diffractive Lenses and Computational Reconstruction(Licensee MDPI, 2022) Gopinath, Shivasubramanian; Praveen, Periyasamy Angamuthu; Kahro, Tauno; Bleahu, Andrei-Ioan; Arockiaraj, Francis Gracy; Smith, Daniel; Ng, Soon Hock; Juodkazis, Saulius; Kukli, Kaupo; Tamm, Aile; Anand, VijayakumarDirect imaging systems that create an image of an object directly on the sensor in a single step are prone to many constraints, as a perfect image is required to be recorded within this step. In designing high resolution direct imaging systems with a diffractive lens, the outermost zone width either reaches the lithography limit or the diffraction limit itself, imposing challenges in fabrication. However, if the imaging mode is switched to an indirect one consisting of multiple steps to complete imaging, then different possibilities open. One such method is the widely used indirect imaging method with Golay configuration telescopes. In this study, a Golay-like configuration has been adapted to realize a large-area diffractive lens with three sub-aperture diffractive lenses. The sub-aperture diffractive lenses are not required to collect light and focus them to a single point as in a direct imaging system, but to focus independently on different points within the sensor area. This approach of a Large-Area Diffractive lens with Integrated Sub-Apertures (LADISA) relaxes the fabrication constraints and allows the sub-aperture diffractive elements to have a larger outermost zone width and a smaller area. The diffractive sub-apertures were manufactured using photolithography. The fabricated diffractive element was implemented in indirect imaging mode using non-linear reconstruction and the Lucy–Richardson–Rosen algorithm with synthesized point spread functions. The computational optical experiments revealed improved optical and computational imaging resolutions compared to previous studies.Item Implementation of a Large-Area Diffractive Lens Using Multiple Sub-Aperture Diffractive Lenses and Computational Reconstruction(2023) Gopinath, Shivasubramanian; Angamuthu, Praveen Periysamy; Kahro, Tauno; Bleahu, Andrei; Arockiaraj, Francis Gracy; Smith, Daniel; Hock Ng, Soon; Juodkazis, Saulius; Kukli, Kaupo; Tamm, Aile; Anand, VijayakumarDirect imaging systems that create an image of an object directly on the sensor in a single step are prone to many constraints, as a perfect image is required to be recorded within this step. In designing high resolution direct imaging systems with a diffractive lens, the outermost zone width either reaches the lithography limit or the diffraction limit itself, imposing challenges in fabrication. However, if the imaging mode is switched to an indirect one consisting of multiple steps to complete imaging, then different possibilities open. One such method is the widely used indirect imaging method with Golay configuration telescopes. In this study, a Golay-like configuration has been adapted to realize a large-area diffractive lens with three sub-aperture diffractive lenses. The sub-aperture diffractive lenses are not required to collect light and focus them to a single point as in a direct imaging system, but to focus independently on different points within the sensor area. This approach of a Large-Area Diffractive lens with Integrated Sub-Apertures (LADISA) relaxes the fabrication constraints and allows the sub-aperture diffractive elements to have a larger outermost zone width and a smaller area. The diffractive sub-apertures were manufactured using photolithography. The fabricated diffractive element was implemented in indirect imaging mode using non-linear reconstruction and the Lucy–Richardson–Rosen algorithm with synthesized point spread functions. The computational optical experiments revealed improved optical and computational imaging resolutions compared to previous studies.Item Improved Classification of Blurred Images with Deep-Learning Networks Using Lucy-Richardson-Rosen Algorithm(Licensee MDPI, 2023) Jayavel, Amudhavel; Gopinath, Shivasubramanian; Angamuthu, Praveen Periyasamy; Arockiaraj, Francis Gracy; Bleahu, Andrei; Xavier, Agnes Pristy Ignatius; Smith, Daniel; Han, Molong; Slobozhan, Ivan; Ng, Soon Hock; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Sharma, Rajesh; Juodkazis, Saulius; Anand, VijayakumarPattern recognition techniques form the heart of most, if not all, incoherent linear shift-invariant systems. When an object is recorded using a camera, the object information is sampled by the point spread function (PSF) of the system, replacing every object point with the PSF in the sensor. The PSF is a sharp Kronecker Delta-like function when the numerical aperture (NA) is large with no aberrations. When the NA is small, and the system has aberrations, the PSF appears blurred. In the case of aberrations, if the PSF is known, then the blurred object image can be deblurred by scanning the PSF over the recorded object intensity pattern and looking for pattern matching conditions through a mathematical process called correlation. Deep learning-based image classification for computer vision applications gained attention in recent years. The classification probability is highly dependent on the quality of images as even a minor blur can significantly alter the image classification results. In this study, a recently developed deblurring method, the Lucy-Richardson-Rosen algorithm (LR2A), was implemented to computationally refocus images recorded in the presence of spatio-spectral aberrations. The performance of LR2A was compared against the parent techniques: Lucy-Richardson algorithm and non-linear reconstruction. LR2A exhibited a superior deblurring capability even in extreme cases of spatio-spectral aberrations. Experimental results of deblurring a picture recorded using high-resolution smartphone cameras are presented. LR2A was implemented to significantly improve the performances of the widely used deep convolutional neural networks for image classification.Item Mid-infrared Incoherent Three-Dimensional Imaging Using Lucy-Richardson-Rosen Algorithm(Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP), 2022) Anand, Vijayakumar; Han, Molong; Maksimovic, Jovan; Hock Ng, Soon; Katkus, Tomas; Klein, Annaleise; Bambery, Keith R.; Tobin, Mark J.; Vongsvivut, Jitraporn; Juodkazis, SauliusTwo computational reconstruction methods namely the Lucy-Richardson algorithm and non-linear reconstruction have been combined to develop Lucy-Richardson-Rosen algorithm. This new algorithm has been used to convert a two-dimensional infrared spectral map into a three-dimensional image.Item Nonlinear Reconstruction of Images from Patterns Generated by Deterministic or Random Optical Masks—Concepts and Review of Research(Journal of Imaging, 2022) Smith, Daniel; Gopinath, Shivasubramanian; Arockiaraj, Francis Gracy; Reddy, Andra Naresh Kumar; Balasubramani, Vinoth; Kumar, Ravi; Dubey, Nitin; Ng, Soon Hock; Katkus, Tomas; Selva, Shakina Jothi; Renganathan, Dhanalakshmi; Kamalam, Manueldoss Beaula Ruby; Rajeswary, Aravind Simon John Francis; Navaneethakrishnan, Srinivasan; Inbanathan, Stephen Rajkumar; Valdma, Sandhra-Mirella; Praveen, Periyasamy Angamuthu; Amudhavel, Jayavel; Kumar, Manoj; Ganeev, Rashid A.; Magistretti, Pierre J.; Depeursinge, Christian; Juodkazis, Saulius; Rosen, Joseph; Anand, VijayakumarIndirect-imaging methods involve at least two steps, namely optical recording and computational reconstruction. The optical-recording process uses an optical modulator that transforms the light from the object into a typical intensity distribution. This distribution is numerically processed to reconstruct the object’s image corresponding to different spatial and spectral dimensions. There have been numerous optical-modulation functions and reconstruction methods developed in the past few years for different applications. In most cases, a compatible pair of the optical-modulation function and reconstruction method gives optimal performance. A new reconstruction method, termed nonlinear reconstruction (NLR), was developed in 2017 to reconstruct the object image in the case of optical-scattering modulators. Over the years, it has been revealed that the NLR can reconstruct an object’s image modulated by an axicons, bifocal lenses and even exotic spiral diffractive elements, which generate deterministic optical fields. Apparently, NLR seems to be a universal reconstruction method for indirect imaging. In this review, the performance of NLR is investigated for many deterministic and stochastic optical fields. Simulation and experimental results for different cases are presented and discussedItem Optimizing the temporal and spatial resolutions and light throughput of Fresnel incoherent correlation holography in the framework of coded aperture imaging(2024) Arockiaraj, Francis Gracy; Xavier, Agnes Pristy Ignatius; Gopinath, Shivasubramanian; Rajeswary, Aravind Simon John Francis; Juodkazis, Saulius; Anand, VijayakumarFresnel incoherent correlation holography (FINCH) is a well-established digital holography technique for 3D imaging of objects illuminated by spatially incoherent light. FINCH has a higher lateral resolution of 1.5 times that of direct imaging systems with the same numerical aperture. However, the other imaging characteristics of FINCH, such as axial resolution, temporal resolution, light throughput, and signal-to-noise ratio (SNR), are lower than those of direct imaging systems. Different techniques were developed by researchers around the world to improve the imaging characteristics of FINCH while retaining the inherent higher lateral resolution of FINCH. However, most of the solutions developed to improve FINCH presented additional challenges. In this study, we optimized FINCH in the framework of coded aperture imaging. Two recently developed computational methods, such as transport of amplitude into phase based on the Gerchberg Saxton algorithm and Lucy–Richardson–Rosen algorithm, were applied to improve light throughput and image reconstruction, respectively. The above implementation improved the axial resolution, temporal resolution, and SNR of FINCH and moved them closer to those of direct imaging while retaining the high lateral resolution. A point spread function (PSF) engineering technique has been implemented to prevent the low lateral resolution problem associated with the PSF recorded using pinholes with a large diameter. We believe that the above developments are beyond the state-of-the-art of existing FINCH-scopes.Item Preface: International Conference on Holography Meets Advanced Manufacturing (HMAM2)(2023) Anand, Vijayakumar; Jayavel, Amudhavel; Palm, Viktor; Gopinath, Shivasubramanian; Bleahu, Andrei; Rajeswary, Aravind Simon John Francis; Kukli, Kaupo; Balasubramani, Vinoth; Smith, Daniel; Ng, Soon Hock; Juodkazis, SauliusThe CIPHR group, Institute of Physics, University of Tartu, Estonia, and Optical Sciences Center, Swinburne University of Technology, Australia, jointly organized the interdisciplinary online conference “Holography Meets Advanced Manufacturing” during 20–22 February 2023.Item Realizing Fresnel Incoherent Correlation Holography as a Coded Aperture Imaging System using Advanced Computational Algorithms(2023) Arockiaraj, Francis Gracy; Xavier, Agnes Pristy Ignatius; Gopinath, Shivasubramanian; Rajeswary, Aravind Simon John Francis; Juodkazis, Saulius; Anand, VijayakumarFresnel incoherent correlation holography (FINCH) also called as incoherent digital holography. In FINCH, a self-interference Fresnel hologram is created when light from an object point is split into two, modulated using two different quadratic phase masks and interfered. At least three such holograms are needed with phase shifts 0,2π/3 and 4π/3 and combined to remove the twin image and bias terms during computational reconstruction involving Fresnel backpropagation. When the FINCH setup is engineered to achieve the same beam diameter for the two interfering beams, a super lateral resolution which is 1.5 times that of a direct imaging system for the same numerical aperture, is obtained. FINCH has a low temporal and axial resolution and low light throughput when compared to the direct imaging system. In this study, FINCH is enhanced and realized as a coded aperture imaging (CAI) system using three computational algorithms: Transport of Amplitude into Phase based on Gerchberg Saxton Algorithm (TAP-GSA), Lucy-Richardson-Rosen algorithm (LRRA) and computational point spread function engineering (CPSFE) technique. The PSF is recorded for FINCH in the first step as in CAI and used as the reconstruction function. The TAP-GSA was used to improve the design of phase masks and achieve a high light throughput. The CPSFE was used to shift the lateral resolution limit from the diameter of the pinhole which is used for recording the PSF to the limit of FINCH. The LRRA was used for the reconstruction of FINCH holograms. Optical experimental results of CAI-inspired ‘perfect’ FINCH are promising for applications in fluorescence microscopy.