Sirvi Autor "Juodkazis, Saulius" järgi
Nüüd näidatakse 1 - 20 39
- Tulemused lehekülje kohta
- Sorteerimisvalikud
listelement.badge.dso-type Kirje , 3D free-form optical lens — miniaturised fibre couplers for astrophotonics(2025) Mu, Haoran; Smith, Daniel; Katkus, Tomas; Le, Nguyen Hoai An; Stonyte, Dominyka; Gailevičius, Darius; Kapsaskis, Dan; Del Frate, Alexander; Singh Bedi, Talwinder; Narbutis, Donatas; Anand, Vijayakumar; Astrauskyte, Darija; Grineviciute, Lina; Ng, Soon Hock; Glazebrook, Karl; Lawrence, Jon; Juodkazis, SauliusIn astronomy, multi-object spectrographs employ fibre positioning robots to couple the light from multiple astronomical sources (stars or galaxies) into multiple multi-mode fibres, which are distributed across the focal plane of the telescope. These fibres transport the celestial light to the entrance slit of a spectrograph (or bank of spectrographs) for analysis. For any multi-object system, mm-scale opto-mechanical solutions are required to couple the telescope light efficiently into the fibre. We demonstrate a unique micro()-optics solution to replace current optical fibre couplers. Specifically, we target technology on board the Keck telescope’s FOBOS - Fibre-Optic Broadband Optical Spectrograph — which operates at UV to IR spectral ranges. For spectrally broadband UV-IR band operation, we use glass and crystals: fused silica, crystalline quartz (transparency ), sapphire Al2O3 (), CaF (), and BaF (). The miniaturised -coupler is monolithic, with the entire light path contained within glass or crystal, seamlessly extending to the fibre entrance, which is laser-machined and precisely aligned with the optical axis.listelement.badge.dso-type Kirje , 4D imaging using accelerating airy beams and nonlinear reconstruction(2023) Bleahu, Andrei; Gopinath, Shivasubramanian; Anand, Vijayakumar; Rosen, Joseph; Juodkazis, Saulius; Tamm, Aile; Kukli, Kaupo; Rajeswary, Aravind Simon John Francis; Katkus, Tomas; Pristy, Agnes; Ng, Soon Hock; Praveen, P. A.; Kahro, Tauno; Smith, Daniel; Arokiaraj, Francis Gracy; Kumar, Ravilistelement.badge.dso-type Kirje , Bridging spectroscopy and advanced molecular orientation analysis with new 4+ angle polarization toolbox in Quasar(2025) Gassner, Callum; Vongsvivut, Jitraporn; Ryu, Meguya; Ng, Soon Hock; Toplak, Marko; Anand, Vijayakumar; Takkalkar, Pooja; Sims, Natalie A.; Wood, Bayden R.; Tobin, Mark J.; Juodkazis, Saulius; Morikawa, JunkoAnisotropy plays a critical role in governing the mechanical, thermal, electrical, magnetic, and optical properties of materials, influencing their behavior across diverse applications. Probing and quantifying this directional dependence is crucial for advancing materials science and biomedical research, as it provides a deeper understanding of structural orientations at the molecular level, encompassing both scientific and industrial benefits. This study introduces the “4+ Angle Polarization” widget, an innovative extension to the open-source Quasar platform (https://quasar.codes/), tailored for advanced multiple-angle polarization analysis. This toolbox enables precise in-plane molecular orientation analysis of complex microspectroscopic datasets through a streamlined workflow. Using polarized Fourier transform infrared (p-FTIR) spectroscopy, we demonstrate its versatility across various sample types, including polylactic acid (PLA) organic crystals, murine cortical bone, and human osteons. By overcoming the limitations of traditional two-angle methods, the widget significantly enhances the accuracy of structural and orientational analysis. This novel analytical tool expands the potential of multiple-angle p-FTIR techniques into advanced characterization of structural anisotropy in heterogeneous systems, providing transformative insights for materials characterization, biomedical imaging and beyond.listelement.badge.dso-type Kirje , Coded Aperture Imaging using Non-Linear Lucy-Richardson Algorithm(2025) Xavier, Agnes Pristy Ignatius; Kahro, Tauno; Gopinath, Shivasubramanian; Tiwari, Vipin; Smith, Daniel; Kasikov, Aarne; Piirsoo, Helle-Mai; Ng, Soon Hock; Rajeswary, Aravind Simon John Francis; Vongsvivut, Jitraporn; Tamm, Aile; Kukli, Kaupo; Juodkazis, Saulius; Rosen, Joseph; Anand, VijayakumarImaging involves the process of recording and reproducing images as close to reality as possible, encompassing both direct and indirect approaches. In direct imaging, the object is directly recorded. Coded aperture imaging (CAI) is an example of indirect imaging, that utilizes optical recording and computational reconstruction to obtain information about an object. Computational reconstruction can be achieved using different linear, non-linear, iterative, and deep learning algorithms. In this study, we proposed and demonstrated two computational reconstruction algorithms based on the non-linear Lucy-Richardson algorithm (NL-LRA), one for limited support images and another for full-view images based on entropy reduction. The efficacy of these algorithms has been validated through simulations and optical experiments carried out in visible and infrared (IR) light with different coded phase masks. The methods were also tested on a commercial IR microscope with internal Globar™ and synchrotron sources. The results obtained from the two algorithms were compared with those from their parent methods, and a notable improvement in both entropy and the convergence rate was observed. We believe the developed algorithms will drastically improve image reconstruction in incoherent imaging applicationslistelement.badge.dso-type Kirje , Coded Aperture-Based Self-wavefront Interference Using Transverse Splitting Holography(2023 International Conference on Next Generation Electronics (NEleX), 2023) Joshi, Narmada; Xavier, Agnes Pristy Ignatius; Arockiaraj, Francis Gracy; Rajeswary, Aravind Simon John Francis; Juodkazis, Saulius; Rosen, Joseph; Tamm, Aile; Anand, VijayakumarSelf-wavefront interference transverse splitting holography (SWITSH) is a recently developed holographic technique to solve a fundamental problem in the manufacturing of large-area diffractive lenses. In SWITSH, a low NA diffractive lens modulates the light from an object, and the modulated light is interfered with light from the same object that reaches beyond the aperture of the diffractive lens. The resulting self-interference hologram is processed with the pre-recorded point spread hologram using the Lucy-Richardson-Rosen algorithm. Since the self-interference hologram is formed by collecting light beyond the NA of the diffractive lens, it acquires the object information corresponding to the higher spatial frequencies of the object. Consequently, a higher imaging resolution is obtained in SWITSH compared to that of direct imaging with a diffractive lens. In the proof-of-concept study, a resolution improvement of an order was demonstrated. However, the optical architecture of the first version of SWITSH was not optimal, as the strength of the self-interference signal was weak. In this study, we improve SWITSH using different coded apertures, such as axicon and spiral element. An improvement in the strength of the self-interference signal was noticed with the axicon and spiral element. Simulation and experimental results using a diffractive lens, axicon and spiral element are presented.listelement.badge.dso-type Kirje , Computational Imaging at the Infrared Beamline of the Australian Synchrotron Using the Lucy–Richardson–Rosen Algorithm(2023) Ng, Soon Hock; Anand, Vijayakumar; Han, Molong; Smith, Daniel; Maksimovic, Jovan; Katkus, Tomas; Klein, Annaleise; Bambery, Keith; Tobin, Mark J.; Vongsvivut, Jitraporn; Juodkazis, SauliusThe Fourier transform infrared microspectroscopy (FTIRm) system of the Australian Synchrotron has a unique optical configuration with a peculiar beam profile consisting of two parallel lines. The beam is tightly focused using a 36× Schwarzschild objective to a point on the sample and the sample is scanned pixel by pixel to record an image of a single plane using a single pixel mercury cadmium telluride detector. A computational stitching procedure is used to obtain a 2D image of the sample. However, if the imaging condition is not satisfied, then the recorded object’s information is distorted. Unlike commonly observed blurring, the case with a Schwarzschild objective is unique, with a donut like intensity distribution with three distinct lobes. Consequently, commonly used deblurring methods are not efficient for image reconstruction. In this study, we have applied a recently developed computational reconstruction method called the Lucy–Richardson–Rosen algorithm (LRRA) in the online FTIRm system for the first time. The method involves two steps: training step and imaging step. In the training step, the point spread function (PSF) library is recorded by temporal summation of intensity patterns obtained by scanning the pinhole in the x-y directions across the path of the beam using the single pixel detector along the z direction. In the imaging step, the process is repeated for a complicated object along only a single plane. This new technique is named coded aperture scanning holography. Different types of samples, such as two pinholes; a number 3 USAF object; a cross shaped object on a barium fluoride substrate; and a silk sample are used for the demonstration of both image recovery and 3D imaging applications.listelement.badge.dso-type Kirje , Computational three-dimensional imaging with near infrared synchrotron beam using Fresnel zone apertures fabricated on barium fluoride windows using femtosecond laser ablation(2023) Smith, Daniel; Han, Molong; Ng, Soon Hock; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Tobin, Mark J.; Vongsvivut, Jitraporn; Juodkazis, Saulius; Anand, Vijayakumarlistelement.badge.dso-type Kirje , Deep Deconvolution of Object Information Modulated by a Refractive Lens Using Lucy-Richardson-Rosen Algorithm(2022) Praveen, P.A.; Arockiaraj, Francis Gracy; Gopinath, Shivasubramanian; Smith, Daniel; Kahro, Tauno; Valdma, Sandhra-Mirella; Bleahu, Andrei; Ng, Soon Hock; Reddy, Andra Naresh Kumar; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Ganeev, Rashid A.; Pikker, Siim; Kukli, Kaupo; Tamm, Aile; Juodkazis, Saulius; Anand, VijayakumarA refractive lens is one of the simplest, most cost-effective and easily available imaging elements. Given a spatially incoherent illumination, a refractive lens can faithfully map every object point to an image point in the sensor plane, when the object and image distances satisfy the imaging conditions. However, static imaging is limited to the depth of focus, beyond which the point-to-point mapping can only be obtained by changing either the location of the lens, object or the imaging sensor. In this study, the depth of focus of a refractive lens in static mode has been expanded using a recently developed computational reconstruction method, Lucy-Richardson-Rosen algorithm (LRRA). The imaging process consists of three steps. In the first step, point spread functions (PSFs) were recorded along different depths and stored in the computer as PSF library. In the next step, the object intensity distribution was recorded. The LRRA was then applied to deconvolve the object information from the recorded intensity distributions during the final step. The results of LRRA were compared with two well-known reconstruction methods, namely the Lucy-Richardson algorithm and non-linear reconstruction.listelement.badge.dso-type Kirje , Digital refocusing of images recorded with white light using Lucy-Richardson-Rosen algorithm(2022) Praveen, P. A.; Bleahu, Andrei; Arockiaraj, F. G.; Gopinath, Shivasubramanian; Smith, Daniel; Ng, Soon Hock; Simon, Aravind; Juodkazis, Saulius; Anand, VijayakumarLens-based imaging is one of the widely used scientific methods to record optical information. As long as the imaging conditions are satisfied, this method can be used to image an object faithfully. However, beyond the limit of the depth of focus of the optical element, the collected image appears blurred. Though shifting the location of the optical element or the sensor offers a solution to the above problem, it is not suitable for recording dynamic events. There are different deconvolution methods available for digital refocusing of blurred images. Recently, a new reconstruction method called Lucy-Richardson-Rosen algorithm (LR2A) was developed for deconvolution based 2D and 3D incoherent imaging applications. In the present work, we have demonstrated LR2A on blurred images recorded using white light for the first time. A simple, commonly available refractive lens along with an incoherent white light source was used to record the point spread functions (PSF) at different depths. Then, the object information in the corresponding planes were also recorded. Finally, the PSF library was used to digitally refocus the object information. The results were compared with standard algorithms such as Lucy-Richardson and nonlinear reconstruction methods. In all the cases, LR2A exhibited a superior performance.listelement.badge.dso-type Kirje , Extraordinary Computational Imaging Technologies with Ordinary Optical Modulators (Invited)(2022) Anand, Vijayakumar; Ng, Soon Hock; Maksimovic, Jovan; Katkus, Tomas; Han, Molong; Linklater, Denver P.; Klein, Annaleise; Bambery, Keith R.; Tobin, Mark J.; Ivanova, Elena P.; Vongsvivut, Jitraporn; Juodkazis, SauliusComputational imaging technology (CIT) has revolutionized the field of imaging. CITs based on two genres namely random and deterministic optical fields generated by common optical modulators with extraordinary imaging capabilities are discussed.listelement.badge.dso-type Kirje , Fraxicon for Optical Applications with Aperture ∼1 mm: Characterisation Study(2023) Mu, Haoran; Smith, Daniel; Ng, Soon Hock; Anand, Vijayakumar; Le, Nguyen Hoai An; Dharmavarapu, Raghu; Khajehsaeidimahabadi, Zahra; Richardson, Rachael T.; Ruther, Patrick; Stoddart, Paul R.; Gricius, Henrikas; Baravykas, Tomas; Gailevicius, Darius; Seniutinas, Gediminas; Katkus, Tomas; Juodkazis, SauliusEmerging applications of optical technologies are driving the development of miniaturised light sources, which in turn require the fabrication of matching micro-optical elements with sub-1 mm cross-sections and high optical quality. This is particularly challenging for spatially constrained biomedical applications where reduced dimensionality is required, such as endoscopy, optogenetics, or optical implants. Planarisation of a lens by the Fresnel lens approach was adapted for a conical lens (axicon) and was made by direct femtosecond 780 nm/100 fs laser writing in the SZ2080™ polymer with a photo-initiator. Optical characterisation of the positive and negative fraxicons is presented. Numerical modelling of fraxicon optical performance under illumination by incoherent and spatially extended light sources is compared with the ideal case of plane-wave illumination. Considering the potential for rapid replication in soft polymers and resists, this approach holds great promise for the most demanding technological applications.listelement.badge.dso-type Kirje , Fresnel Incoherent Correlation Holography using Lucy-Richardson-Rosen Algorithm(Digital Holography and 3-D Imaging 2022, 2022) Balasubramani, Vinoth; Anand, Vijayakumar; Reddy, Andra Naresh Kumar; Rajeswary, Aravind Simon John Francis; Magistretti, Pierre J.; Depeursinge, Christian; Juodkazis, SauliusFresnel incoherent correlation holography (FINCH) is a super-resolution imaging method which requires at least three camera shots to image an object. In this study, we have demonstrated single-shot FINCH using a recently developed Lucy-Richardson-Rosen algorithm.listelement.badge.dso-type Kirje , Fresnel incoherent correlation holography with Lucy-Richardson-Rosen algorithm and modified Gerchberg-Saxton algorithm(Society of Photo-Optical Instrumentation Engineers (SPIE), 2023) Bleahu, Andrei; Gopinath, Shivasubramanian; Arockiaraj, Francis Gracy; Rajeswary, Aravind Simon John Francis; Juodkazis, Sauliuslistelement.badge.dso-type Kirje , Fresnel incoherent correlation holography with Lucy-Richardson-Rosen algorithm and modified Gerchberg-Saxton algorithm(2023) Anand, Vijayakumar; Juodkazis, Saulius; Rajeswary, Aravind Simon John Francis; Arockiaraj, Francis Gracy; Gopinath, Shivasubramanian; Bleahu, Andreilistelement.badge.dso-type Kirje , Holographic solution to a fundamental problem in diffractive optics: resolution beyond diffraction and lithography limits(2023) Bleahu, Andrei; Gopinath, Shivasubramanian; Xavier, Agnes Pristy Ignatius; Kahro, Tauno; Reddy, Andra Naresh Kumar; Arockiaraj, Francis Gracy; Smith, Daniel; Ng, Soon Hock; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Angamuthu, Praveen Periyasami; Pikker, Siim; Kukli, Kaupo; Tamm, Aile; Juodkazis, Saulius; Rosen, Joseph; Anand, Vijayakumarlistelement.badge.dso-type Kirje , Imaging with Diffractive Axicons Rapidly Milled on Sapphire by Femtosecond Laser Ablation(2023) Smith, Daniel; Ng, Soon Hock; Han, Molong; Katkus, Tomas; Anand, Vijayakumar; Juodkazis, SauliusWe show that single-pulse burst fabrication will produce a flatter and smoother profile of axicons milled on sapphire compared to pulse overlapped fabrication which results in a damaged and much rougher surface. The fabrication of large-area (sub-1 cm cross-section) micro-optical components in a short period of time (∼10 min) and with less processing steps is highly desirable and would be cost-effective. Our results were achieved with femtosecond laser fabrication technology which has revolutionized the field of advanced manufacturing. This study compares three configurations of axicons such as the conventional axicon, a photon sieve axicon (PSA) and a sparse PSA directly milled onto a sapphire substrate. Debris of redeposited amorphous sapphire were removed using isopropyl alcohol and potassium hydroxide. A spatially incoherent illumination was used to test the components for imaging applications. Non-linear reconstruction was used for cleaning noisy images generated by the axicons.listelement.badge.dso-type Kirje , Implementation of a Large-Area Diffractive Lens Using Multiple Sub-Aperture Diffractive Lenses and Computational Reconstruction(Licensee MDPI, 2022) Gopinath, Shivasubramanian; Praveen, Periyasamy Angamuthu; Kahro, Tauno; Bleahu, Andrei-Ioan; Arockiaraj, Francis Gracy; Smith, Daniel; Ng, Soon Hock; Juodkazis, Saulius; Kukli, Kaupo; Tamm, Aile; Anand, VijayakumarDirect imaging systems that create an image of an object directly on the sensor in a single step are prone to many constraints, as a perfect image is required to be recorded within this step. In designing high resolution direct imaging systems with a diffractive lens, the outermost zone width either reaches the lithography limit or the diffraction limit itself, imposing challenges in fabrication. However, if the imaging mode is switched to an indirect one consisting of multiple steps to complete imaging, then different possibilities open. One such method is the widely used indirect imaging method with Golay configuration telescopes. In this study, a Golay-like configuration has been adapted to realize a large-area diffractive lens with three sub-aperture diffractive lenses. The sub-aperture diffractive lenses are not required to collect light and focus them to a single point as in a direct imaging system, but to focus independently on different points within the sensor area. This approach of a Large-Area Diffractive lens with Integrated Sub-Apertures (LADISA) relaxes the fabrication constraints and allows the sub-aperture diffractive elements to have a larger outermost zone width and a smaller area. The diffractive sub-apertures were manufactured using photolithography. The fabricated diffractive element was implemented in indirect imaging mode using non-linear reconstruction and the Lucy–Richardson–Rosen algorithm with synthesized point spread functions. The computational optical experiments revealed improved optical and computational imaging resolutions compared to previous studies.listelement.badge.dso-type Kirje , Implementation of a Large-Area Diffractive Lens Using Multiple Sub-Aperture Diffractive Lenses and Computational Reconstruction(2023) Gopinath, Shivasubramanian; Angamuthu, Praveen Periysamy; Kahro, Tauno; Bleahu, Andrei; Arockiaraj, Francis Gracy; Smith, Daniel; Hock Ng, Soon; Juodkazis, Saulius; Kukli, Kaupo; Tamm, Aile; Anand, VijayakumarDirect imaging systems that create an image of an object directly on the sensor in a single step are prone to many constraints, as a perfect image is required to be recorded within this step. In designing high resolution direct imaging systems with a diffractive lens, the outermost zone width either reaches the lithography limit or the diffraction limit itself, imposing challenges in fabrication. However, if the imaging mode is switched to an indirect one consisting of multiple steps to complete imaging, then different possibilities open. One such method is the widely used indirect imaging method with Golay configuration telescopes. In this study, a Golay-like configuration has been adapted to realize a large-area diffractive lens with three sub-aperture diffractive lenses. The sub-aperture diffractive lenses are not required to collect light and focus them to a single point as in a direct imaging system, but to focus independently on different points within the sensor area. This approach of a Large-Area Diffractive lens with Integrated Sub-Apertures (LADISA) relaxes the fabrication constraints and allows the sub-aperture diffractive elements to have a larger outermost zone width and a smaller area. The diffractive sub-apertures were manufactured using photolithography. The fabricated diffractive element was implemented in indirect imaging mode using non-linear reconstruction and the Lucy–Richardson–Rosen algorithm with synthesized point spread functions. The computational optical experiments revealed improved optical and computational imaging resolutions compared to previous studies.listelement.badge.dso-type Kirje , Improved Classification of Blurred Images with Deep-Learning Networks Using Lucy-Richardson-Rosen Algorithm(Licensee MDPI, 2023) Jayavel, Amudhavel; Gopinath, Shivasubramanian; Angamuthu, Praveen Periyasamy; Arockiaraj, Francis Gracy; Bleahu, Andrei; Xavier, Agnes Pristy Ignatius; Smith, Daniel; Han, Molong; Slobozhan, Ivan; Ng, Soon Hock; Katkus, Tomas; Rajeswary, Aravind Simon John Francis; Sharma, Rajesh; Juodkazis, Saulius; Anand, VijayakumarPattern recognition techniques form the heart of most, if not all, incoherent linear shift-invariant systems. When an object is recorded using a camera, the object information is sampled by the point spread function (PSF) of the system, replacing every object point with the PSF in the sensor. The PSF is a sharp Kronecker Delta-like function when the numerical aperture (NA) is large with no aberrations. When the NA is small, and the system has aberrations, the PSF appears blurred. In the case of aberrations, if the PSF is known, then the blurred object image can be deblurred by scanning the PSF over the recorded object intensity pattern and looking for pattern matching conditions through a mathematical process called correlation. Deep learning-based image classification for computer vision applications gained attention in recent years. The classification probability is highly dependent on the quality of images as even a minor blur can significantly alter the image classification results. In this study, a recently developed deblurring method, the Lucy-Richardson-Rosen algorithm (LR2A), was implemented to computationally refocus images recorded in the presence of spatio-spectral aberrations. The performance of LR2A was compared against the parent techniques: Lucy-Richardson algorithm and non-linear reconstruction. LR2A exhibited a superior deblurring capability even in extreme cases of spatio-spectral aberrations. Experimental results of deblurring a picture recorded using high-resolution smartphone cameras are presented. LR2A was implemented to significantly improve the performances of the widely used deep convolutional neural networks for image classification.listelement.badge.dso-type Kirje , Interferenceless coded aperture correlation holography for five-dimensional imaging of 3D space, spectrum and polarization(2025) Joshi, Narmada; Tiwari, Vipin; Kahro, Tauno; Xavier, Agnes Pristy Ignatius; Tahara, Tatsuki; Kasikov, Aarne; Kukli, Kaupo; Juodkazis, Saulius; Tamm, Aile; Rosen, Joseph; Anand, VijayakumarInterferenceless coded aperture correlation holography (I-COACH) is a robust imaging technique for recovering three-dimensional object information using incoherent holography without two-beam interference. In this study, five-dimensional (5D) imaging along 3D space, spectrum and polarization in I-COACH is proposed and experimentally demonstrated for the first time. The proposed technique exploits the polarization-dependent light modulation characteristics of spatial light modulators to record polarization-dependent intensity distributions, which are distinguished by significant blurring between orthogonal polarization states. 5D I-COACH is implemented by inter-connecting all five dimensions in a single frame, and image recovery is attempted from different configurations of recorded point spread intensity distributions and response-to-object intensity distributions along 5D using recently developed deconvolution techniques. The simulation and experimental results confirm the 5D imaging capabilities of I-COACH. The proposed technique can be a useful tool for birefringence microscopy, and functional and structural imaging applications.