Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Karumaa, Anti" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Machine Learning Based Risk Scoring for Money Mule Detection
    (Tartu Ülikool, 2025) Hiiu, Annabel; Karumaa, Anti; Raun, Kristo, juhendaja; Martignano, Anna, juhendaja; Jöhnemark, Alexander, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    Money laundering is a serious problem for the financial systems, as it helps criminals hide illegal funds and damages trust in banks. Money mules are individuals who transfer money on behalf of others, often unknowingly, and play a central role in these activities. Detecting money mules is a major challenge for financial institutions. Traditional detection methods rely on fixed rules that are not flexible enough to keep up with changing criminal tactics. This thesis explores the application of machine learning models for detecting money mules by assigning client-level risk scores based on transaction habits, product usage, and personal information. Multiple models were evaluated, with XGBoost demonstrating the highest area under the precision–recall curve (AUPRC) of 0.1314, indicating strong performance in this highly imbalanced setting. The model shows potential to detect over half of known money mules while maintaining a manageable false positive rate. These findings suggest that integrating machine learning into anti-money laundering systems can improve anti-money laundering efforts, helping banks prevent criminal activity, protect their customers and maintain their reputation.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet