Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Kasepuu, Raivo" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Muusika toonimise kasutamine muusika žanrite klassifitseerimise mudelites
    (Tartu Ülikool, 2023) Kasepuu, Raivo; Aljanaki, Anna, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    Käesoleva magistritöö raames teostatakse uurimus leidmaks, kuidas muusikafailide toonimised mõjuvad muusika žanrite klassifitseerimiste mudelite täpsusele. Püstitatud ülesande lahendamiseks võrreldakse toonimata andmestikuga etalon mudeli täpsust erinevate toonitud andmestike abil loodud mudelite täpsustega. Töö sisendiks on GTZAN muusika andmestik ja muusika toonimisi uuritakse MFCC koefitsientidel põhinevatel muusika žanrite klassifitseerimise mudelitel. Töö tulemusel selgus, et toonitud muusikaga rikastatud andmestikel treenitud muusika žanri klassifitseerimise mudelid on keskmiselt täpsemad kui ainult toonimata muusika muusikal treenitud mudelid.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet