Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Kaya, Kayahan" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Improving Automated Feature Engineering Using Meta-Learning Based Techniques
    (Tartu Ülikool, 2022) Kaya, Kayahan; El Shawi, Radwa, juhendaja; Eldeeb, Hassan, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    Building well-performing machine learning pipelines requires the use of feature engineering. However, building highly predictive features takes time and requires subject-matter expertise. Although automated feature engineering research has recently gained a lot of attention from both academia and industry, the scalability and efficiency of the current methods and tools are still essentially subpar. To this end, we proposed meta-learning techniques to improve the performance of two automated machine learning frameworks; BigFeat and AutoFeat. Extensive experiments were conducted on 17 and 10 datasets for Bigfeat and AutoFeat, respectively. The results show that the proposed meta-learning techniques achieved an average improvement of F1-Score = 1.51% on BigFeat and an average improvement of F1-Score = 1.11% on AutoFeat.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet