Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Kirikal, Johan" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Modelling Creativity Using Artificial Neural Networks
    (Tartu Ülikool, 2025) Kirikal, Johan; Aru, Jaan, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    The mental processes and algorithms that lead to creativity are still largely unknown. Psychological theories suggest that creativity arises from a balance between associative memory structure and the executive processes that retrieve and recombine information. In this thesis, I explore whether artificial neural networks can exhibit creative-like behaviour through controlled entropy modulation. Using the Continuous Generative Flow Network (C-GFN), a biologically inspired architecture, I simulate the impact of increased stochasticity on creative output. By varying the standard deviation in the model’s inner dynamics, I test the hypothesis that higher internal entropy leads to more creative outputs, as the entropy modulation theory of creativity predicted. As a result, models with elevated entropy not only generated more diverse symbolic representations but also did so more quickly and covered a greater distance in their latent space, emulating the faster-and-further phenomenon observed in human creativity research. These findings provide computational support for the associative and executive theories of creativity and highlight the role of entropy modulation in creative behaviour.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet