Browsing by Author "Laisk, Triin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity(2018) Suhorutshenko, Marina; Kukushkina, Viktorija; Velthut-Meikas, Agne; Altmäe, Signe; Peters, Maire; Mägi, Reedik; Krjutškov, Kaarel; Koel, Mariann; Codoñer, Francisco M; Martinez-Blanch, Juan Fco; Vilella, Felipe; Simón, Carlos; Salumets, Andres; Laisk, TriinSTUDY QUESTION Does cellular composition of the endometrial biopsy affect the gene expression profile of endometrial whole-tissue samples? SUMMARY ANSWER The differences in epithelial and stromal cell proportions in endometrial biopsies modify the whole-tissue gene expression profiles and affect the results of differential expression analyses. WHAT IS ALREADY KNOWN Each cell type has its unique gene expression profile. The proportions of epithelial and stromal cells vary in endometrial tissue during the menstrual cycle, along with individual and technical variation due to the method and tools used to obtain the tissue biopsy. STUDY DESIGN, SIZE, DURATION Using cell-population specific transcriptome data and computational deconvolution approach, we estimated the epithelial and stromal cell proportions in whole-tissue biopsies taken during early secretory and mid-secretory phases. The estimated cellular proportions were used as covariates in whole-tissue differential gene expression analysis. Endometrial transcriptomes before and after deconvolution were compared and analysed in biological context. PARTICIPANTS/MATERIAL, SETTING, METHODS Paired early- and mid-secretory endometrial biopsies were obtained from 35 healthy, regularly cycling, fertile volunteers, aged 23–36 years, and analysed by RNA sequencing. Differential gene expression analysis was performed using two approaches. In one of them, computational deconvolution was applied as an intermediate step to adjust for the proportions of epithelial and stromal cells in the endometrial biopsy. The results were then compared to conventional differential expression analysis. Ten paired endometrial samples were analysed with qPCR to validate the results. MAIN RESULTS AND THE ROLE OF CHANCE The estimated average proportions of stromal and epithelial cells in early secretory phase were 65% and 35%, and during mid-secretory phase, 46% and 54%, respectively, correlating well with the results of histological evaluation (r = 0.88, P = 1.1 × 10−6). Endometrial tissue transcriptomic analysis showed that approximately 26% of transcripts (n = 946) differentially expressed in receptive endometrium in cell-type unadjusted analysis also remain differentially expressed after adjustment for biopsy cellular composition. However, the other 74% (n = 2645) become statistically non-significant after adjustment for biopsy cellular composition, underlining the impact of tissue heterogeneity on differential expression analysis. The results suggest new mechanisms involved in endometrial maturation, involving genes like LINC01320, SLC8A1 and GGTA1P, described for the first time in context of endometrial receptivity. LARGE-SCALE DATA The RNA-seq data presented in this study is deposited in the Gene Expression Omnibus database with accession number GSE98386. LIMITATIONS REASONS FOR CAUTION Only dominant endometrial cell types were considered in gene expression profile deconvolution; however, other less frequent endometrial cell types also contribute to the whole-tissue gene expression profile. WIDER IMPLICATIONS OF THE FINDINGS The better understanding of molecular processes during transition from pre-receptive to receptive endometrium serves to improve the effectiveness and personalization of assisted reproduction protocols. Biopsy cellular composition should be taken into account in future endometrial ‘omics’ studies, where tissue heterogeneity could potentially influence the results. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by: Estonian Ministry of Education and Research (grant IUT34-16); Enterprise Estonia (EU48695); the EU-FP7 Eurostars program (NOTED, EU41564); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (SARM, EU324509); Horizon 2020 innovation program (WIDENLIFE, EU692065); MSCA-RISE-2015 project MOMENDO (No 691058) and the Miguel Servet Program Type I of Instituto de Salud Carlos III (CP13/00038); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER): grants RYC-2016-21199 and ENDORE SAF2017-87526. Authors confirm no competing interests.Item Large-scale meta-analysis highlights the hypothalamic–pituitary–gonadal axis in the genetic regulation of menstrual cycle length(Human Molecular Genetics, 2018) Laisk, Triin; Kukuškina, Viktorija; Palmer, Duncan; Laber, Samantha; Chen, Chia-Yen; Ferreira, Teresa; Rahmioglu, Nilufer; Zondervan, Krina; Becker, Christian; Smoller, Jordan W; Lippincott, Margaret; Salumets, Andres; Granne, Ingrid; Seminara, Stephanie; Neale, Benjamin; Mägi, Reedik; Lindgren, Cecilia MThe normal menstrual cycle requires a delicate interplay between the hypothalamus, pituitary and ovary. Therefore, its length is an important indicator of female reproductive health. Menstrual cycle length has been shown to be partially controlled by genetic factors, especially in the follicle-stimulating hormone beta-subunit (FSHB) locus. A genome-wide association study meta-analysis of menstrual cycle length in 44 871 women of European ancestry confirmed the previously observed association with the FSHB locus and identified four additional novel signals in, or near, the GNRH1, PGR, NR5A2 and INS-IGF2 genes. These findings not only confirm the role of the hypothalamic–pituitary–gonadal axis in the genetic regulation of menstrual cycle length but also highlight potential novel local regulatory mechanisms, such as those mediated by IGF2.Item The genetic architecture of sporadic and multiple consecutive miscarriage(Nature Communications, 2020-11-25) Laisk, Triin; Soares, Ana Luiza G.; Lindgren, Cecilia M.; Ferreira, Teresa; Painter, Jodie N.; Censin, Jenny C.; Laber, Samantha; Bacelis, Jonas; Chen, Chia-Yen; Lepamets, Maarja; Lawlor, Deborah A.; Mägi, Reedik; Medland, Sarah E.; Granne, Ingrid; Walters, Robin G.; Nielsen, Rasmus; Neale, Benjamin M.; Martin, Nicholas G.; Li, Liming; Jacobsson, Bo; Conrad, Donald F.; Chen, Zhengming; Werge, Thomas; Zondervan, Krina; Snieder, Harold; Salumets, Andres; Seminara, Stephanie; Lippincott, Margaret; Nyholt, Dale R.; Nordentoft, Merete; Njølstad, Pål R.; Mortensen, Preben B.; Mors, Ole; Morris, Andrew P.; Montgomery, Grant W.; Metspalu, Andres; Lind, Penelope A.; Kukushkina, Viktorija; Kartsonaki, Christiana; Juodakis, Julius; Johansson, Stefan; Jin, Xin; Hougaard, David M.; Helgeland, Øyvind; Bybjerg-Grauholm, Jonas; Gordon, Scott D.; Børglum, Anders D.; Becker, Christian M.; Yang, Ling; Andersen, Marianne S.; Southcombe, Jennifer; Ramu, Avinash; Millwood, Iona Y.; Liu, Siyang; Lin, KuangMiscarriage is a common, complex trait affecting ~15% of clinically confirmed pregnancies. Here we present the results of large-scale genetic association analyses with 69,054 cases from five different ancestries for sporadic miscarriage, 750 cases of European ancestry for multiple (≥3) consecutive miscarriage, and up to 359,469 female controls. We identify one genome-wide significant association (rs146350366, minor allele frequency (MAF) 1.2%, P = 3.2 × 10−8, odds ratio (OR) = 1.4) for sporadic miscarriage in our European ancestry meta-analysis and three genome-wide significant associations for multiple consecutive miscarriage (rs7859844, MAF = 6.4%, P = 1.3 × 10−8, OR = 1.7; rs143445068, MAF = 0.8%, P = 5.2 × 10−9, OR = 3.4; rs183453668, MAF = 0.5%, P = 2.8 × 10−8, OR = 3.8). We further investigate the genetic architecture of miscarriage with biobank-scale Mendelian randomization, heritability, and genetic correlation analyses. Our results show that miscarriage etiopathogenesis is partly driven by genetic variation potentially related to placental biology, and illustrate the utility of large-scale biobank data for understanding this pregnancy complication.