Sirvi Autor "Leno, Volodymyr" järgi
Nüüd näidatakse 1 - 2 2
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Kuhjuv protsessikaartide avastamine(2017) Leno, Volodymyr; Marlon Dumas; Michal RosikProtsessikaeve on meetodite kogu, analüüsimaks protsesside teostuse jooksul loodud sündmuste logisid, et saada teavet nende parandamiseks. Protsessikaeve meetodite kogu, mida nimetatakse automatiseeritud protsessi avastuseks, lubab analüütikutel leida informatsiooni äriprotsesside mudelite kohta sündmuste logidest. Automatiseeritud protsessi avastusmeetodeid kasutatakse tavaliselt ühenduseta keskkonnas, mis tähendab, et protsessi mudel avastatakse hetketõmmisena tervest sündmuste logist. Samas on olukordi, kus uued juhtumid tulevad peale sellise suure kiirusega, et ei ole mõtet salvestada tervet sündmuste logi ja pidevalt nullist taasavastada mudelit. Selliste olukordade jaoks oleks vaja võrgus olevaid protsessi avastusmeetmeid. Andes sisendiks protsessi teostuse käigus loodud sündmuste voo, võrgus oleva protsessi avastusmeetodi eesmärk on järjepidevalt uuendada protsessi mudelit, tehes seda piiratud hulga mäluga ja säilitades sama täpsust, mida suudavad meetodid ühenduseta keskkondades. Olemasolevad meetodid vajavad palju mälu, et saavutada tulemusi, mis oleks võrreldavad ühenduseta keskkonnas saadud tulemustega. Käesolev lõputöö pakub välja võrgus oleva protsessi avastusraamistiku, ühtlustades protsessi avastus probleemi vähemälu haldusega ja kasutades vähemälu asenduspoliitikaid lahendamaks antud probleemi. Loodud raamistik on kirjutatud kasutades .NET-i, integreeritud Minit protsessikaeve tööriistaga ja analüüsitud kasutades elulisi ärijuhte.Kirje Robotic Process Mining: accelerating the adoption of Robotic Process Automation(2021-12-09) Leno, Volodymyr; Dumas, Marlon, juhendaja; Maggi, Fabrizio Maria, juhendaja; La Rosa, Marcello, juhendaja; Polyvyanyy, Artem, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondProtsessi muutmine võib ettevõtetele osutuda kulukaks ja riskantseks, kuid vajalikuks. Muutuste eiramine võib avaldada mõju ettevõtte resurssidele, selle keskkonnale või jätkusuutlikusele. Üks ettevõtete poolt enimkasutatumaid meetmeid disainimiseks ja hindamiseks protsessi on äriprotsessi simulatsioon. See tehnika võimaldab luua hüpoteetilisi stsenaariume ja hinnata teostuse tagajärgi virtuaalses keskkonnas võtmata riski ebaõnnestuda reaalsuses. Modifitseerides protsessi üksikasju simulaatoris annab võimaluse analüütikutele teha oletusi nagu näiteks „kui sa eemaldad selle, juhtub see või kui sa lisad selle, siis võib juhtuda see.“ Selline võime on väga mugav abistamaks otsuse tegemise protsessi seoses potensiaalsete muutustega. Probleem antud meetodiga on, et simulatsioonimudeli loomine ja sobitamine on komplitseeritud ülesanne, mis vajab aega ja spetsialiseerunud tehnilisi teadmisi. Lisaks loovad analüütikud tavaliselt simulatsioonimudeleid, viies läbi intervjuusid, vaatlusi ja testimisi. Kõik need tehnikad on väga altid eelarvamustele, mis tähendab, et manuaalselt loodud mudelite täpsus on suhteliselt ekslik. Kõik see valmistab pettumust äriprotsessi simulatsiooni kasutusele võtmisel, mis teeb ettevõtetele antud tehnika kasutamise keeruliseks. Käesolev doktoritöö pakub välja uusi tehnikaid loomaks äriprotsessi simulatsioonimudeleid, mis kasutavad andmeid ettevõtete infosüsteemidest samaaegselt neuronvõrkude ja protsessikaeve algoritmidega. Antud doktoritöö eesmärk on luua täpsemat automaatset simulatsioonitehnikat, mis vajab vähem inimese sekkumist, lahendamaks puuduseid hetkel kasutuselolevast protsessi simulatsioonimootori lähenemisest. Me ühendame käesolevas doktoritöös välja toodud tehnikad kahes avatud lähtekoodiga tööriistas. Esimene tööriist, Simod, suudab täisautomaatselt avastada ja peenhäälestada simulatsioonimudeleid läbi kaeveprotsessi tehnikate. Välja toodud meetodil on siiski puudused, mis puudutavad iga tegevuse ajaennustust. Vastuseks on teine tööriist, DeepSimulator, mis ühildab avastamistehnikad, baseerudes kaeveprotsessile koos generatiivsete mudelitega, mis põhinevad süvaõppel. Hinnangu tulemused sellise hübriidlähenemise viisil viivad simulatsioonideni, mis peegeldavad lähemalt täheldatud protsessi dünaamikat kui meetodid, mis põhinevad paljalt kaeveprotsessil või süvaõppel.