Browsing by Author "Lepik, Kaido"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Inferring causality between transcriptome and complex traits(2021-03-22) Lepik, Kaido; Peterson, Hedi, juhendaja; Vilo, Jaak, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondHaiguste mõistmiseks ja ravimiseks on keskseks eelduseks põhjuslike, haigusprotsessides osalevate geenide väljaselgitamine – selliste geenide poolt kodeeritud valkude tööd saab ravimite abil haigustele pärssivalt ümber korraldada. Põhjuslike seoste leidmisel on peamiseks standardiks laboratoorsed katsed ja kontrollgrupiga kliinilised uuringud, kuid nende läbiviimine on kulukas ja aeganõudev. Käesolevas doktoritöös näitame, et haigusi ja teisi kompleksseid fenotüübilisi tunnuseid põhjuslikult mõjutavaid geene saab märksa efektiivsemalt tuvastada statistiliste meetoditega. Geneetikas on põhjuslik analüüs alles hiljuti hoo sisse saanud seoses rahvuslike biopankade poolt kogutud suurte andmemahtude rakendamisega. Valdkond on uudne ja suure potentsiaaliga, mistõttu on vastav matemaatiline teooria alles kujunemisjärgus ja kiiresti arenev. Pühendame doktoritöös märkimisväärset tähelepanu nii selle teooria süstemaatilisele esitusele kui ka praktilistele edasiarendustele. Põhjusliku statistilise analüüsi alusprintsiipe rakendades töötame välja metoodika põhjuslike geenide tuvastamiseks väikestest valimitest (n ≈ 500), informeerides põletikumarkeri C-reaktiivse valgu funktsiooni immuunvastuses. Domeeniteadmistele tuginedes loome põhjuslike mudelite eelduste suhtes robustse algoritmi, mis võimaldab mistahes haiguse või komplekstunnuse toimemehhanismides olulist rolli omavaid geene avastada hüpoteesivabalt üle terve genoomi. Süvitsi vaatleme ühes haigustega seotud genoomipiirkonnas (16p11.2) leiduvate geenide mõju reproduktiivtervisele, osutades just funktsionaalselt olulistele geenidele. Personaalmeditsiini arenguid silmas pidades uurime ka põhjuslike geenide sõltuvust soost. Samuti hüpotiseerime, kas populaarsed assotsiatsiooniuuringud geenide ja haiguste vahel tuvastavad põhjuslikke geene, haigustest tingitud muutusi geeniekspressioonis või pelgalt juhuslikku müra. Peamised teadustöö tulemused verifitseerime laboris katseliselt.Item Spordiennustused: kihlveokontoritega konkureerimine NBA-s(Tartu Ülikool, 2014-06-17) Lepik, Kaido; Lember, Jüri, juhendaja; Tartu Ülikool. Matemaatika-informaatikateaduskond; Tartu Ülikool. Matemaatilise statistika instituutKäesolev magistritöö püüab näidata, et spordikihlvedusid võib sõlmida professionaalsetel alustel, arvestades riskiga ja baseerides panustamisotsused matemaatikale. Töös on sporditulemustele ennustamist vaadeldud mitmekülgselt, alustades teema motiveerimisega ja probleemistiku uurimisega, kogudes ja korrastades suurel hulgal olulisi andmed, tutvustades juba varasemalt tehtud töid ja ideid; pakutud on uusi lahendusi, implementeeritud mitmeid algoritme ja teostatud kogutud andmetel põhjalik analüüs. Magistritöö jaoks on veebiroboti abil kogutud enam kui 15000 korvpallimängu andmed aastatelt 2000 kuni 2013 ja rohkem kui 5000 korvpallimängu koefitsiendid paljudelt kihlveokontoritelt. Mängude kohta kogutud informatsioon hõlmab nii meeskondade, mängijate ja viisikute kohta käivaid kokkuvõtlikke statistikuid kui ka sündmus-sündmus andmeid. Kõik andmed on korrastatud ja organiseeritud relatsioonilisse andmebaasi. Analüüsi osas veenduti esialgu teoreetiliselt tõestatud tulemuses, et juhuslikult spordisündmustele panustamine on keskmiselt kahjumlik. Seejärel püüti kasumlikult panustada lihtsate mudelite abil, mis klassifitseerisid korvpallimängu võitja meeskondade eelnevate omavaheliste mängude põhjal. Leiti mudel, mis suurest testandmetel tehtud klassifitseerimisveast (41,4%) hoolimata andis panustamissituatsioonis suure tulususe. Kihlveokontoreid püüti võita ka tehisõppe meetodite abil. Selleks kasutati logistilist regressiooni ja AdaBoosti, sobivate tunnuste valikuks implementeeriti mitmed heuristikud. Ükski nimetatud meetoditega treenitud klassifitseerija ei olnud panustamisel kasumlik, samas suutis parim logistilise regressiooni mudel klassifitseerida korrektselt 68,9% testmängudest. Lihtsate mudelite ja tehisõppe meetoditega leitud mudelite põhjal veendusime, et parem klassifitseerija ei pruugi anda suuremat kasumit. Seetõttu on klassifitseerijate ehitamisel treeningriski minimiseerimise asemel proovitud maksimiseerida ka treeningkasumit. Ideed on püütud jõuga realiseerida otsustuspuude abil. Samuti on implementeeritud modifitseeritud AdaBoosti meetod, mis kaalus vaatlusi vastavalt koefitsientide suurusele ja töötas kohati paremini kui originaalne AdaBoost. Lisaks on korvpallimängude võitjaid proovitud ennustada korvpallitulemuste simuleerimise abil Poissoni protsesside põhjal.