Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Liivak, Martin" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 2 2
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    3D-mikroaku termiliste omaduste modelleerimine
    (Tartu Ülikool, 2017) Liivak, Martin; Zadin, Vahur, juhendaja; Priimägi, Priit, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Füüsika instituut
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Sample-efficient Online Learning in a Physical Environment
    (Tartu Ülikool, 2020) Liivak, Martin; Matiisen, Tambet, juhendaja; Paat, Rainer, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    Autonomous driving has been seen as the next breakthrough in transportation. Autonomous vehicles employ a variety of sensors to understand their surroundings, for example multiple cameras, ultrasound sensors, and LiDARs. In this work, a much smaller scale radio-controlled cars, that only carry a central camera, are used. Their effectiveness as a test-bed for validating autonomous driving methods is evaluated. Multiple neural network architectures were proposed, among which a convolutional neural network was selected as the best candidate. The network was then trained using both supervised learning and online learning, the results of which were then compared. Experiments show that online learning in a physical environment, while costly, is a significant improvement over pure supervised learning. Additionally the radio-controlled cars proved to be a good comparative test-bed for evaluating model performance in an interactive physical environment.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet