Browsing by Author "Matiisen, Tambet"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item DNA mutatsiooniliste signatuuride õppimine tehisnärvivõrkude abil(2016) Tammeveski, Lauri; Zafra, Raul Vicente; Parts, Leopold; Matiisen, Tambet; Tampuu, ArdiKõik pahaloomulised vähkkasvajad on põhjustatud organismi rakkudes\n\rtoimuvate mutatsioonide poolt. On leitud, et need mutatsioonid\n\ron moodustatud spetsiifiliste mustrite ehk signatuuride kombinatsioonist,\n\rmille aluseks olevad protsessid on tihti teada. Seetõttu on nende\n\rsignatuuride õppimine andmetest väga tähtis — see võib anda paremat\n\rinformatsiooni vähkkasvajate mehhanismide kohta ja olla abiks\n\rvähi ennetamisel ja teraapial. Antud töö eesmärk on testida ja võrrelda\n\rerinevaid metoodikaid, et parandada mutatsiooniliste signatuuride\n\rleidmist. Me võrdlesime kolme uut meetodit — tehis-närvivõrgud\n\r(NN), mittenegatiivsed faktorvõrgud (RFN) ja teemade modelleerimine\n\r— praegu kasutatava mittenegatiivse maatriksi faktoriseerimisega\n\r(NMF). Me eksperimenteerisime meetoditega kolmel orgaanilisel ja kolmel\n\rsünteetilisel andmestikul ning mõõtsime rekonstrueerimise viga, tulemuse\n\rhõredust ja arvutusteks kulunud aega. Tulemused näitavad, et\n\rNMF annab väikseima veaga tulemuse kergematel andmestikel, kuid ka\n\rRFN-i tulemus on ligilähedane ning kõikidel teistel andmestikel saavutab\n\rsee parema tulemuse. NN esineb sama hästi kui RFN keerulisematel\n\randmestikel ning lisaks saavutab üleüldiselt kõige hõredamad tulemused.\n\rNMF-i eeliseks on stabiilsuse arvutamise funktsionaalsus, mis väga\n\rtäpselt suudab määrata õige signatuuride arvu. Tulevikus tuleb teha\n\redasist arendustööd, et sarnane võimekus ka RFN ja NN meetoditele\n\rlisada, mille järel oleks võimalik nende praktiline kasutamine mutatsiooniliste\n\rsignatuuride õppimisel.Item Mobiilirakenduse loomine tehisnärvivõrgule(2015) Vahtra, Rasmus; Matiisen, TambetKäesoleva töö raames valmis lahendus mobiilirakendusest, serveriliidesest ning tehisnärvivõrgust. Täpsemalt on seletatud projektis kasutatud tehisnärvivõrgu arhitektuuri ning ehitust, ühtlasi ka loodud lahenduse tööpõhimõtet. Samuti on välja toodud ka, et milleks selline lahendus üldse hea olla võiks.Item Näotuvastus Fotis andmebaasi põhjal(2015-03-03) Matiisen, TambetItem Näotuvastuseks treenitud tehisnärvivõrkude võrdlemine(2016) Uibo, Zepp; Matiisen, TambetSelles töös uuriti kolme hiljuti avaldatud näotuvastuseks treenitud tehisnärvivõrku. Kõik need\n\rvõrgud on seni näidanud häid tulemusi kõrge kvaliteediga piltide identifitseerimist kontrollivates\n\rtestides. Huvi tekitas küsimus, kas need võrgud on võimelised samaväärseid tulemusi saavutama\n\rmadalama kvaliteediga arhiivipiltide peal. Loodi uus testandmestik Eesti Rahvusarhiivi piltidest ja\n\rvõrreldi, kui täpsed on võrgud tuvastama, kas kaks nägu kuuluvad samale või erinevatele\n\rinimestele. Parim korratava tulemusega närvivõrk saavutas uute andmete peal täpsuse 91.18%.\n\rTöö autor soovitab sama närvivõrguga Eesti Rahvusarhiivi andmete peal tööd jätkata.