Browsing by Author "Pourmoradnasseri, Mozhgan"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Some Problems Related to Extensions of Polytopes(2017-05-02) Pourmoradnasseri, Mozhgan; Theis, Dirk Oliver, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondLineaarplaneerimine on optimeerimine matemaatilise mudeliga, mille sihi¬funktsioon ja kitsendused on esitatud lineaarsete seostega. Paljusid igapäeva elu väljakutseid võime vaadelda lineaarplaneerimise vormis, näiteks miinimumhinna või maksimaalse tulu leidmist. Sisepunkti meetod saavutab häid tulemusi nii teoorias kui ka praktikas ning lahendite leidmise tööaeg ja lineaarsete seoste arv on polünomiaalses seoses. Sellest tulenevalt eksponentsiaalne arv lineaarseid seoseid väljendub ka ekponentsiaalses tööajas. Iga vajalik lineaarne seos vastab ühele polütoobi P tahule, mis omakorda tähistab lahendite hulka. Üks võimalus tööaja vähendamiseks on suurendada dimensiooni, mille tulemusel väheneks ka polütoobi tahkude arv. Saadud polütoopi Q nimeta¬takse polütoobi P laiendiks kõrgemas dimensioonis ning polütoobi Q minimaalset tahkude arvu nimetakakse polütoobi P laiendi keerukuseks, sellisel juhul optimaalsete lahendite hulk ei muutu. Tekib küsimus, millisel juhul on võimalik leida laiend Q, mille korral tahkude arv on polünomiaalne. Mittedeterministlik suhtluskeerukus mängib olulist rolli tõestamaks polütoopide laiendite keerukuse alampiiri. Polütoobile P vastava suhtluskeerukuse leidmine ning alamtõkke tõestamine väistavad võimalused leida laiend Q, mis ei oleks eksponentsiaalne. Käesolevas töös keskendume me juhuslikele Boole'i funktsioonidele f, mille tihedusfunktsioon on p = p(n). Me pakume välja vähima ülemtõkke ning suurima alamtõkke mittedeterministliku suhtluskeerukuse jaoks. Lisaks uurime me ka pedigree polütoobi graafi. Pedigree polütoop on rändkaupmehe ülesande polütoobi laiend, millel on kombinatoorne struktuur. Polütoobi graafi võib vaadelda kui abstraktset graafi ning see annab informatsiooni polütoobi omaduste kohta.