Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Radsin, Kristjan" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Machine Learning Methods for Crack Identification in Euler-Bernoulli Beams
    (Tartu Ülikool, 2025) Radsin, Kristjan; Jaanuska, Ljubov, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    The objective of this bachelor’s thesis is to evaluate the suitability of various machine learning methods for crack identification in Euler-Bernoulli beams placed on a Pasternak foundation. Methods available in Python libraries are used for this purpose. The machine learning methods of interest are linear regression, kernel ridge, Gaussian process regression, K-nearest neighbours, random forest, gradient boosting, and artificial neural network. The models are trained on three datasets: the one is based on the beam’s natural frequencies, the second one is based on the Haar wavelet coefficients obtained from the mode shape, and the third one is based on the Fourier transformed frequencies. In addition, the models are tested on a dataset containing white noise in the 5% range. The results show that the best results for predicting crack location can be achieved with models trained on the Haar wavelet coefficients, and Gaussian process regression turns out to be the best method for this case. Fourier transformed frequencies give the best results in predicting crack depth, and random forests are the most successful method in this case.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet