Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Rao, Karina" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Produce Quality and Pesticide Residue Estimation Using Light Sensing
    (Tartu Ülikool, 2023) Rao, Karina; Flores, Huber, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    While produce quality estimation across various stages in the value chain is essential to tackle food loss and waste, determining pesticide residue in fresh produce can alleviate the threat to human health and the environment. Light sensing offers a non-invasive and cost-effective method to establish unique fingerprints for fresh produce. During a 12-day produce decomposition period, it was established that light reflectivity is effective for the quality estimation of vegetables. The AdaBoost classification model with blue light reflectivity value, vegetable items and luminosity as input features achieved a performance accuracy of 92.4%. While measuring reflectivity intensity, it is important to account for varying lighting conditions (luminosity). Notwithstanding the success of predicting the quality of fresh produce, light sensing failed in pesticide residue estimation.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet