Sirvi Autor "Ruusmann, Laura" järgi
Nüüd näidatakse 1 - 2 2
- Tulemused lehekülje kohta
- Sorteerimisvalikud
listelement.badge.dso-type Kirje , Comparison of category-level, item-level and general sales forecasting models(Tartu Ülikool, 2020) Ruusmann, Laura; Dumas, Marlon, juhendaja; Muuli, Eerik, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituutSales forecasting is the process of estimating future sales. In this thesis, multiple methods are tested out for achieving best forecasting accuracy with lowest computational requirements. Three families of methods are investigated: a traditional statistical forecasting approach (ARIMA), classical machine learning techniques (specifically ensemble methods) and a third one based on deep learning methods (specifically recurrent neural networks with LSTM architectures). The study uses real-world sales transaction data from a large retail company in a Baltic country and the aim of this thesis is to improve their current sales forecasting system. Here we show that improving on their current sales forecasting is possible and additionally analyse the influence of promotional sales to prediction accuracy. The results show that using a combination of multiple item-level decision tree-based ensemble models yields the best prediction accuracy with regard to training complexity. Additionally, when comparing accuracy of forecasts for promotional sales and non-promotional sales, a variant of ARIMA achieves the most accurate results when forecasting promotional sales.listelement.badge.dso-type Kirje , Gaussi protsesside usaldusvahemik(2018) Ruusmann, Laura; Meelis KullMasinõpe on arvutiteaduse valdkond, mis tegeleb arvutisüsteemide oskusega iseseisvalt õppida. Masinõppemeetodeid kasutatakse nii andmete kirjeldamiseks kui ka tunnustele väärtuste ennustamiseks. Kui masinõppemudelit kasutatakse reaalarvulise väärtuse ennustamiseks, siis nimetatakse seda regressiooniks. Praktikas on reaalarvulist väärtust ennustades tihti tarvis arvestada, et vääral ennustusel võivad olla kallid tagajärjed. Väärade ennustuste kahju aitab vähendada see, kui mudel oskab ise hinnata, kui täpne tema ennustus on. Üheks näiteks sellisest hinnangust on tagastada vahemik, kuhu mudel 95% tõenäosusega hindab olevat õige väärtuse. Selline lähenemine on Gaussi protsessidel põhineva regressioonimudeli eriliseks omaduseks ning seda vahemikku nimetatakse usaldusvahemikuks. On oluline, et mudeli hinnang enda täpsuse kohta vastaks tegelikkusele ning et mudel ei hindaks end liiga enesekindlalt. Masinõppemudelite usaldusväärsuse hindamine on oluline, sest selliste mudelitega tarkvara kätte on tänapäeval usaldatud üha vastutusrikkamate otsuste langetamine. Antud bakalaureusetöö keskendub Gaussi protsessidel põhineva regressioonimudeli enesekindluse uurimisele. Antud töös uuritakse, kui tihti satuvad ennustatavate väärtuste tegelikud väärtused vahemikku, kuhu mudel hindab nende sattumise 95% tõenäosusega. Mõõtmised 6651 mudelil näitavad, et suurem osa päris märgendeid satuvad usaldusvahemikku oluliselt harvem kui 95% juhtudest ehk et Gaussi protsesside mudel on liigselt enesekindel. Keskmiseks usaldusvahemikku kuulunud osakaaluks on 0,93. Töö peamine tulemus on, et 73% mõõtetulemustest on madalamad kui võiks olla eelnevalt nimetatud tõenäosuse järgi. Ühtlasi on märkimisväärne see, et kõige väiksemate ja kõige suuremate väärtustega sisendväärtuste puhul on mudel rohkem liigselt enesekindel. Gaussi protsesside usaldusvahemiku uurimise näol on tegemist millegagi, midaei ole varem uuritud. Tänu käesolevale tööle on olemas hinnang Gaussi protsesside regressioonimudeli usaldusväärsusele ning selle töö tulemus aitab Gaussi protsesside kasutajatel võtta arvesse antud meetodi liigset enesekindlust.