Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Shrestha, Jatan" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Sampling-based Bi-level Optimization aided by Behaviour Cloning for Autonomous Driving
    (Tartu Ülikool, 2023) Shrestha, Jatan; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Tehnoloogiainstituut
    Autonomous driving has a natural bi-level structure. The upper behavioural layer aims to provide appropriate lane change, speeding up, and braking decisions to optimize a given driving task. The upper layer can only indirectly influence the driving efficiency through the lower-level trajectory planner, which takes in the behavioural inputs to produce motion commands for the controller. Existing sampling-based approaches do not fully exploit the strong coupling between the behavioural and planning layer. On the other hand, Reinforcement Learning (RL) can learn a behavioural layer while incorporating feedback from the lower-level planner. However, purely data-driven approaches often fail regarding safety metrics in dense and rash traffic environments. This thesis presents a novel alternative; a parameterized bi-level optimization that jointly computes the optimal behavioural decisions and the resulting downstream trajectory. The proposed approach runs in real-time using a custom Graphics Processing Unit (GPU)-accelerated batch optimizer and a Conditional Variational Autoencoder (CVAE) learnt warm-start strategy and extensive experiments on challenging traffic scenarios show that it outperforms state-of-the-art Model Predictive Control (MPC) and RL approaches regarding collision rate while being competitive in driving efficiency.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet