Browsing by Author "Singh, M. Scott Arockia"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Faithful Transfer of 3D Propagation Characteristics of Deterministic and Random Optical Fields to Coded Aperture Imaging Systems Using Lucy-Richardson-Rosen Algorithm(2023 International Conference on Next Generation Electronics (NEleX), 2023) Xavier, Agnes Pristy Ignatius; Arockiaraj, Francis Gracy; Gopinath, Shivasubramanian; Rajeswary, Aravind Simon John Francis; Reddy, Andra Naresh Kumar; Ganeev, Rashid A.; Singh, M. Scott Arockia; Tania, S.D. Milling; Anand, VijayakumarEngineering the complex amplitude and polarization of light is essential for various applications. In this direction, many deterministic and random optical beams such as Airy Bessel, and self-rotating beams were developed. While the above beams satisfied the requirements for the targeted applications, they are not suitable for imaging applications in spite of the valuable axial characteristics they possess, as they are not effective object-image mapping elements. Consequently, when exotic beams were implemented for direct imaging, only a distorted image was obtained. However, the scenario is different in coded aperture imaging (CAI) methods, where the imaging mode is indirect, consisting of optical recording and computational image recovery. Therefore, the point spread function (PSF) in CAI is not the recorded intensity distribution but the reconstructed intensity distribution. By employing a suitable computational reconstruction method, it is possible to convert the recorded intensity distribution into a Delta-like function. In this study, Lucy-Richardson-Rosen algorithm has been implemented as a generalized image recovery method for a wide range of optical beams, and the performance is validated in both simulation and optical experiments.Item Single-Shot 3D Incoherent Imaging Using Deterministic and Random Optical Fields with Lucy–Richardson–Rosen Algorithm(2023) Xavier, Agnes Pristy Ignatius; Arockiaraj, Francis Gracy; Gopinath, Shivasubramanian; Rajeswary, Aravind Simon John Francis; Reddy, Andra Naresh Kumar; Ganeev, Rashid A.; Singh, M. Scott Arockia; Tania, S. D. Milling; Anand, VijayakumarCoded aperture 3D imaging techniques have been rapidly evolving in recent years. The two main directions of evolution are in aperture engineering to generate the optimal optical field and in the development of a computational reconstruction method to reconstruct the object’s image from the intensity distribution with minimal noise. The goal is to find the ideal aperture–reconstruction method pair, and if not that, to optimize one to match the other for designing an imaging system with the required 3D imaging characteristics. The Lucy–Richardson–Rosen algorithm (LR2A), a recently developed computational reconstruction method, was found to perform better than its predecessors, such as matched filter, inverse filter, phase-only filter, Lucy–Richardson algorithm, and non-linear reconstruction (NLR), for certain apertures when the point spread function (PSF) is a real and symmetric function. For other cases of PSF, NLR performed better than the rest of the methods. In this tutorial, LR2A has been presented as a generalized approach for any optical field when the PSF is known along with MATLAB codes for reconstruction. The common problems and pitfalls in using LR2A have been discussed. Simulation and experimental studies for common optical fields such as spherical, Bessel, vortex beams, and exotic optical fields such as Airy, scattered, and self-rotating beams have been presented. From this study, it can be seen that it is possible to transfer the 3D imaging characteristics from non-imaging-type exotic fields to indirect imaging systems faithfully using LR2A. The application of LR2A to medical images such as colonoscopy images and cone beam computed tomography images with synthetic PSF has been demonstrated. We believe that the tutorial will provide a deeper understanding of computational reconstruction using LR2A.