Browsing by Author "Tahara, Tatsuki"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Roadmap of incoherent digital holography(Applied Physics B, 2022) Tahara, Tatsuki; Zhang, Yaping; Rosen, Joseph; Anand, Vijayakumar; Cao, Liangcai; Wu, Jiachen; Koujin, Takako; Matsuda, Atsushi; Ishii, Ayumi; Kozawa, Yuichi; Okamoto, Ryo; Oi, Ryutaro; Nobukawa, Teruyoshi; Choi, Kihong; Imbe, Masatoshi; Poon, Ting-ChungThis roadmap article focuses on spatially incoherent digital holography (IDH). Representative IDH methods such as optical scanning holography (OSH), Fresnel incoherent correlation holography (FINCH), coded aperture correlation holography (COACH), IDH with a Fresnel zone aperture, and IDH with an interferometer along with a state-of-the-art optical device are introduced as modern IDH methods. We describe these IDH techniques with applications of three-dimensional (3D) imagers, 3D thermography, and 3D microscopy.Item Roadmap of incoherent digital holography(2022) Tahara, Tatsuki; Zhang, Yaping; Rosen, Joseph; Anand, Vijayakumar; Cao, Liangcai; Wu, Jiachen; Koujin, Takako; Matsuda, Atsushi; Ishii, Ayumi; Kozawa, Yuichi; Okamoto, Ryo; Oi, Ryutaro; Nobukawa, Teruyoshi; Choi, Kihong; Imbe, Masatoshi; Poon, Ting‑ChungItem Roadmap on computational methods in optical imaging and holography [invited].(2024) Rosen, Joseph; Alford, Simon; Allan, Blake; Anand, Vijayakumar; Arnon, Shlomi; Arockiaraj, Francis Gracy; Art, Jonathan; Bai, Bijie; Balasubramaniam, Ganesh M.; Birnbaum, Tobias; Bisht, Nandan S.; Blinder, David; Cao, Liangcai; Chen, Qian; Chen, Ziyang; Dubey, Vishesh; Egiazarian, Karen; Ercan, Mert; Forbes, Andrew; Gopakumar, G.; Gao, Yunhui; Gigan, Sylvain; Gocłowski, Paweł; Gopinath, Shivasubramanian; Greenbaum, Alon; Horisaki, Ryoichi; Ierodiaconou, Daniel; Juodkazis, Saulius; Karmakar, Tanushree; Katkovnik, Vladimir; Khonina, Svetlana N.; Kner, Peter; Kravets, Vladislav; Kumar, Ravi; Lai, Yingming; Li, Chen; Li, Jiaji; Li, Shaoheng; Li, Yuzhu; Liang, Jinyang; Manavalan, Gokul; Mandal, Aditya Chandra; Manisha, Manisha; Mann, Christopher; Marzejon, Marcin J.; Moodley, Chané; Morikawa, Junko; Muniraj, Inbarasan; Narbutis, Donatas; Ng, Soon Hock; Nothlawala, Fazilah; Oh, Jeonghun; Ozcan, Aydogan; Park, YongKeun; Porfirev, Alexey P.; Potcoava, Mariana; Prabhakar, Shashi; Pu, Jixiong; Rai, Mani Ratnam; Rogalski, Mikołaj; Ryu, Meguya; Choudhary, Sakshi; Salla, Gangi Reddy; Schelkens, Peter; Şener, Sarp Feykun; Shevkunov, Igor; Shimobaba, Tomoyoshi; Singh, Rakesh K.; Singh, Ravindra P.; Stern, Adrian; Sun, Jiasong; Zhou, Shun; Zuo, Chao; Zurawski, Zack; Tahara, Tatsuki; Tiwari, Vipin; Trusiak, Maciej; Vinu, R. V.; Volotovskiy, Sergey G.; Yılmaz, Hasan; Barbosa De Aguiar, Hilton; Ahluwalia, Balpreet S.; Ahmad, AzeemComputational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography.