Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Talman, Aarne" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 4 4
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    NLI Data Sanity Check: Assessing the Effect of Data Corruption on Model Performance
    (Reykjavik, Iceland (Online), Linköping University Electronic Press, Sweden, pp. 276--287, 2021) Talman, Aarne; Apidianaki, Marianna; Chatzikyriakidis, Stergios; Tiedemann, Jörg; Dobnik, Simon; Øvrelid, Lilja
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Poro 34B and the Blessing of Multilinguality
    (University of Tartu Library, 2025-03) Luukkonen, Risto; Burdge, Jonathan; Zosa, Elaine; Talman, Aarne; Komulainen, Ville; Hatanpää, Väinö; Sarlin, Peter; Pyysalo, Sampo; Johansson, Richard; Stymne, Sara
    The pretraining of state-of-the-art large language models now requires trillions of words of text, which is orders of magnitude more than available for the vast majority of languages. While including text in more than one language is an obvious way to acquire more pretraining data, multilinguality is often seen as a curse, and most model training efforts continue to focus near-exclusively on individual large languages. We believe that multilinguality can be a blessing: when the lack of training data is a constraint for effectively training larger models for a target language, augmenting the dataset with other languages can offer a way to improve over the capabilities of monolingual models for that language. In this study, we introduce Poro 34B, a 34 billion parameter model trained for 1 trillion tokens of Finnish, English, and programming languages, and demonstrate that a multilingual training approach can produce a model that substantially advances over the capabilities of existing models for Finnish and excels in translation, while also achieving competitive performance in its class for English and programming languages. We release the model parameters, scripts, and data under open licenses at https://huggingface.co/LumiOpen/Poro-34B.
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Predicting Prosodic Prominence from Text with Pre-trained Contextualized Word Representations
    (Turku, Finland, Linköping University Electronic Press, pp. 281--290, 2019) Talman, Aarne; Suni, Antti; Celikkanat, Hande; Kakouros, Sofoklis; Tiedemann, Jörg; Vainio, Martti; Hartmann, Mareike; Plank, Barbara
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Uncertainty-Aware Natural Language Inference with StochasticWeight Averaging
    (University of Tartu Library, 2023-05) Talman, Aarne; Celikkanat, Hande; Virpioja, Sami; Heinonen, Markus; Tiedemann, Jörg

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet