Sirvi Autor "Teinemaa, Irene" järgi
Nüüd näidatakse 1 - 4 4
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje DMNi otsustabelite verifitseerimine ja lihtsustamine(2016) Laurson, Ülari; Dumas, Marlon; Teinemaa, IreneDecision Model and Notation (DMN) on standardne notatsioon, mida kasutatakse ärirakendustes otsuste loogika kirjeldamiseks. Otsustabelid on DMNi üks peamisi osi. DMNi otsustabelite suurenev kasutatavus igapäevaste äriotsuste ülesmärkimiseks ja automatiseerimiseks on tõstatanud vajadust analüüsida otsustabeleid. See lõputöö annab ülevaate DMN otsustabelist ja kirjeldab kolme skaleeruvat algoritmi, mis on mõeldud leidmaks kattuvaid reegleid ja puuduvaid reegleid ning lihtsustada otsustabeleid kasutades reeglite ühendamist. Kõik välja pakutud algoritmid on implementeeritud avatud lähtekoodiga DMN redaktorisse ja katsetatud suurte otsustabelite peal, mis pärinevad krediidiandmise andmebaasist.Kirje Hinnaelastsusel tuginev soovitussüsteem(2016) Pajula, Gea; Teinemaa, Irene; Vilo, JaakSoovitussüsteeme on palju uuritud ja edukalt rakendatud paljudes valdkondades, et suurendada läbimüüki tehes klienditele asjakohaseid soovitusi. Käesoleva magistritöö eesmärgiks on välja töötada uudne soovitussüsteem, mis teeb klientidele personaalseid pakkumisi toote soodushinna huvipakkuvuse põhjal. Seda saab rakendada olukordades, kus soovitusi tehakse allahinnatud toodete seast. Näiteks valides kampaaniatooteid kliendile saadetavasse personaalsesse uudiskirja. Me kaasame tootepõhise kaasfiltreerimise algoritmi täiendusena majanduse valdkonnas kasutatavat nõudluse hinnaelastsust, et võtta arvesse, et tootel on kampaaniaperioodil tavapärasest madalam hind. Hinnates mudeli abil omaelastsuse väärtuse, saame kliendi tootereitingu, mis näitab, kuidas hinna muutumine mõjutab ostetavat kogust. Toodete sarnasuste leidmiseks kasutame ristelastsust, mis liigitab tooted asendus- ja täiendkaupadeks. Selle suuruse leidmine ei nõua tihti esinevat kaugusmõõtude tingimust, et kaks toodet peavad olema ostetud samade klientide poolt. Kirjeldatud soovitussüsteem on rakendatud reaalelulistele supermarketi tehingute andmetele. Süsteemi headuse testimiseks kasutame kahte kampaaniaperioodi, mille allahinnatuid tooteid kasutame võimalike soovitustena. Me saavutame märgatavalt paremad tulemused kasutades ainult kampaaniatoote elastsusi ja mitte asendustoodete vastavaid väärtusi. Kaasates ainult kliendid, kellele leidsime vähemalt 5 pakkumist, saavutame tunduvalt paremad tulemused. Täpsemalt, tehes neile klientidele 12 soovitust (vähem kui 1% kampaaniatoodete arvust), tabame kõik klientide kampaaniatoodete ostud. Parima meetodi korral saavutame kordustäpsuse 0,24, mis on üle 10 korra parem võrreldes meetodiga, mida ettevõte hetkel kasutab, kus soovitused on manuaalselt valitud kliendi segmentide omaduste põhjal. Supermarketi kett on kinnitanud oma soovi, et esitletud meetodit testida, seega antud soovitussüsteemi rakendatakse reaalselt klientidele huvipakkuvate soovituste tegemiseks.Kirje Kogukonnapõhine aktiivsuse languse ennustamine sotsiaalvõrgustikus(2014) Teinemaa, Irene; Leontjeva, AnnaVirtuaalsete sotsiaalvõrgustike haldajate seisukohalt on oluline tuvastada kasutajaid, kes kaotavad suure tõenäosusega lähitulevikus huvi nende teenuse vastu. Selliste kasutajate ennustamine lubab suunata neile kampaaniaid, hoidmaks või suurendamaks aktiivsust võrgustikus. Nimetatud probleemi lahendatakse sageli masinõppemeetodite abil, tehes ennustusi üksikisiku tasandil. Olemasolevad lahendused ei kasuta aga maksimaalselt ära kasutajate omavahelisi suhteid. Selles kontekstis tutvustame uut lähenemist, ennustamaks aktiivsuse langust kogukondade ehk omavahel tihedalt seotud kasutajate gruppide tasandil. Antud töös kasutame kahte meetodit kogukondade leidmiseks ning võrdleme tulemusi üksikkasutajate ja juhuslike kasutajate gruppidega. Analüüs näitab, et teenusest loobuda plaanivaid kasutajaid on lihtsam leida kogukondade kui üksikisiku tasandil. Tulemused näitavad, et ennustuste kvaliteet sõltub ka kasutatud kogukondade leidmise algoritmist. Meetod, mis leiab kogukonnad lokaalsel tasandil, lähtudes iga kasutaja otsesest suhtlusringkonnast, võimaldab paremaid ennustusi kui võrgustikule tervikuna orienteeritud meetod. Lisaks eelmainitule võimaldab kogukonnapõhine analüüs arvesse võtta täiendavaid tunnuseid, saamaks täpsemaid ennustusi. Saadud tulemused on aluseks uute kogukonnapõhiste meetodite väljatöötamisele, analüüsimaks kasutajate aktiivsust sotsiaalvõrgustikes ning tõstmaks turunduskampaaniate efektiivsust.Kirje Predictive and prescriptive monitoring of business process outcomes(2019-03-14) Teinemaa, Irene; Dumas, Marlon, juhendaja; Maggi, Fabrizio Maria, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondViimastel aastatel on erinevates valdkondades tegutsevad ettevõtted üles näidanud kasvavat huvi masinõppel põhinevate rakenduste kasutusele võtmiseks. Muuhulgas otsitakse võimalusi oma äriprotsesside efektiivsuse tõstmiseks, kasutades ennustusmudeleid protsesside jooksvaks seireks. Sellised ennustava protsessiseire meetodid võtavad sisendiks sündmuslogi, mis koosneb hulgast lõpetatud äriprotsessi juhtumite sündmusjadadest, ning kasutavad masinõppe algoritme ennustusmudelite treenimiseks. Saadud mudelid teevad ennustusi lõpetamata (antud ajahetkel aktiivsete) protsessijuhtumite jaoks, võttes sisendiks sündmuste jada, mis selle hetkeni on toimunud ning ennustades kas järgmist sündmust antud juhtumis, juhtumi lõppemiseni jäänud aega või instantsi lõpptulemust. Lõpptulemusele orienteeritud ennustava protsessiseire meetodid keskenduvad ennustamisele, kas protsessijuhtum lõppeb soovitud või ebasoovitava lõpptulemusega. Süsteemi kasutaja saab ennustuste alusel otsustada, kas sekkuda antud protsessijuhtumisse või mitte, eesmärgiga ära hoida ebasoovitavat lõpptulemust või leevendada selle negatiivseid tagajärgi. Erinevalt puhtalt ennustavatest süsteemidest annavad korralduslikud protsessiseire meetodid kasutajale ka soovitusi, kas ja kuidas antud juhtumisse sekkuda, eesmärgiga optimeerida mingit kindlat kasulikkusfunktsiooni. Käesolev doktoritöö uurib, kuidas treenida, hinnata ja kasutada ennustusmudeleid äriprotsesside lõpptulemuste ennustava ja korraldusliku seire raames. Doktoritöö pakub välja taksonoomia olemasolevate meetodite klassifitseerimiseks ja võrdleb neid katseliselt. Lisaks pakub töö välja raamistiku tekstiliste andmete kasutamiseks antud ennustusmudelites. Samuti pakume välja ennustuste ajalise stabiilsuse mõiste ning koostame raamistiku korralduslikuks protsessiseireks, mis annab kasutajatele soovitusi, kas protsessi sekkuda või mitte. Katsed näitavad, et väljapakutud lahendused täiendavad olemasolevaid meetodeid ning aitavad kaasa ennustava protsessiseire süsteemide rakendamisele reaalsetes süsteemides.