Browsing by Author "Tiwari, Vipin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Extending the Depth of Focus of Infrared Microscope Using a Binary Axicon Fabricated on Barium Fluoride(2024) Han, Molong; Smith, Daniel; Kahro, Tauno; Stonytė, Dominyka; Kasikov, Aarne; Gailevičius, Darius; Tiwari, Vipin; Xavier, Agnes Pristy Ignatius; Gopinath, Shivasubramanian; Ng, Soon Hock; Rajeswary, Aravind Simon John Francis; Tamm, Aile; Kukli, KaupoAxial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise.Item Roadmap on computational methods in optical imaging and holography [invited].(2024) Rosen, Joseph; Alford, Simon; Allan, Blake; Anand, Vijayakumar; Arnon, Shlomi; Arockiaraj, Francis Gracy; Art, Jonathan; Bai, Bijie; Balasubramaniam, Ganesh M.; Birnbaum, Tobias; Bisht, Nandan S.; Blinder, David; Cao, Liangcai; Chen, Qian; Chen, Ziyang; Dubey, Vishesh; Egiazarian, Karen; Ercan, Mert; Forbes, Andrew; Gopakumar, G.; Gao, Yunhui; Gigan, Sylvain; Gocłowski, Paweł; Gopinath, Shivasubramanian; Greenbaum, Alon; Horisaki, Ryoichi; Ierodiaconou, Daniel; Juodkazis, Saulius; Karmakar, Tanushree; Katkovnik, Vladimir; Khonina, Svetlana N.; Kner, Peter; Kravets, Vladislav; Kumar, Ravi; Lai, Yingming; Li, Chen; Li, Jiaji; Li, Shaoheng; Li, Yuzhu; Liang, Jinyang; Manavalan, Gokul; Mandal, Aditya Chandra; Manisha, Manisha; Mann, Christopher; Marzejon, Marcin J.; Moodley, Chané; Morikawa, Junko; Muniraj, Inbarasan; Narbutis, Donatas; Ng, Soon Hock; Nothlawala, Fazilah; Oh, Jeonghun; Ozcan, Aydogan; Park, YongKeun; Porfirev, Alexey P.; Potcoava, Mariana; Prabhakar, Shashi; Pu, Jixiong; Rai, Mani Ratnam; Rogalski, Mikołaj; Ryu, Meguya; Choudhary, Sakshi; Salla, Gangi Reddy; Schelkens, Peter; Şener, Sarp Feykun; Shevkunov, Igor; Shimobaba, Tomoyoshi; Singh, Rakesh K.; Singh, Ravindra P.; Stern, Adrian; Sun, Jiasong; Zhou, Shun; Zuo, Chao; Zurawski, Zack; Tahara, Tatsuki; Tiwari, Vipin; Trusiak, Maciej; Vinu, R. V.; Volotovskiy, Sergey G.; Yılmaz, Hasan; Barbosa De Aguiar, Hilton; Ahluwalia, Balpreet S.; Ahmad, AzeemComputational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography.Item Super-Resolution Correlating Optical Endoscopy(2024) Tamm, Oskar; Tiwari, Vipin; Gopinath, Shivasubramanian; Rajeswary, Aravind Simon John Francis; Singh, Scott Arockia; Rosen, Joseph; Anand, VijayakumarOptical endoscopy is a widely used minimally invasive diagnostic tool for imaging internal organs. The imaging resolution is defined by the numerical aperture of the objective lens. In this study, we proposed and demonstrated a Super-resolution Correlating OPtical Endoscopy (SCOPE) system. In SCOPE, modified recording and reconstruction methods are introduced with the existing built-in endoscopy lens. Instead of recording a single image, multiple images of the object are recorded by scanning the tip of the endoscope around the object. The recorded low-resolution images of the object are arranged as sub-matrices in a 2D matrix. Another similar 2D matrix with either recorded or synthesized point spread functions (PSFs) is created. The 2D matrices of the object and the PSF were processed using a deconvolution algorithm to reconstruct a super-resolution image of the object. Both simulation and proof-of-concept experimental studies have been presented. SCOPE neither requires any additional optical element nor any changes in the endoscopy system itself; therefore, it can be easily implemented in commercial endoscopy systems.