Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi autori järgi

Sirvi Autor "Tolmats, Mona" järgi

Tulemuste filtreerimiseks trükkige paar esimest tähte
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Automaatne kõnesünteesi kvaliteedi hindamine soome-ugri keeltele
    (Tartu Ülikool, 2025) Tolmats, Mona; Rätsep, Liisa, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond; Tartu Ülikool. Arvutiteaduse instituut
    Automatic evaluation of synthesised speech quality accelerates the development of text-to-speech models by replacing costly human listening tests based on mean opinion score. This capability is particularly valuable for low-resource languages, where only limited speech and text corpora are available and finding an adequate group of human evaluators is particularly challenging. The aim of this thesis is to train a model that evaluates the naturalness of Estonian synthetic speech and generalises to other Finno-Ugric languages. A wav2vec 2.0 was trained to predict mean opinion scores on Estonian text-to-speech models outputs. Separately, a wav2vec 2.0 model pre-trained using the SCOREQ loss function was fine-tuned, and the UTMOSv2 model was also adapted through fine-tuning. Training drew on three distinct datasets, while evaluation of cross-lingual generalisability was conducted on a single Võro-language test set. The experimental findings indicated that UTMOSv2 achieved the highest Pearson and Spearman correlations with human judgments and demonstrated superior generalisation to previously unseen Finno-Ugric languages.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet