Sirvi Autor "Veidenberg, Silja" järgi
Nüüd näidatakse 1 - 1 1
- Tulemused lehekülje kohta
- Sorteerimisvalikud
Kirje Lifting bounded approximation properties from Banach spaces to their dual spaces(2017-06-27) Veidenberg, Silja; Oja, Eve, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondAproksimatsiooniomadusi on uuritud alates 1930. aastatest. Süstemaatilised ja aktiivsed uuringud algasid 1955. aastal, mil Grothendieck oma kuulas memuaaris aproksimatsiooniomaduse mõiste kasutusele võttis. Aastal 2011 tõid Figiel, Johnson ja Pełczyński sisse uue tõkestatud aproksimatsiooniomaduse mõiste – Banachi ruumi ja tema kinnise alamruumi paari tõkestatud aproksimatsiooniomaduse. Hiljuti vaatlesid Figiel ja Johnson selle omaduse üldistust – Banachi ruumi kinniste alamruumide ahela tõkestatud aproksimatsiooniomadust. Käesoleva väitekirja põhieesmärk on süstemaatiliselt uurida paaride ja ahela tõkestatud aproksimatsiooniomadusi ning nende üldisemat versiooni – tõkestatud kumerat aproksimatsiooniomadust, mille tõid sisse Lissitsin ja Oja 2011 aastal. Viimane hõlmab erijuhul ka Banachi võrede positiivse aproksimatsiooniomaduse mõistet. Väitekirjas tõestatakse, et sellise paari tõkestatud aproksimatsiooniomadus, kus paar koosneb kaasruumist ja alamruumi annulaatorist, toob endaga kaasa vastava duaalse omaduse lähtepaari jaoks. Antud tulemust laiendatakse ka tõkestatud ahela aproksimatsiooniomaduste konteksti. Seejuures töötatakse välja uued lokaalse refleksiivsuse printsiibi versioonid, mis on kooskõlas Banachi ruumi kinniste alamruumide ahelatega. Töös leitakse tõkestatud kumera aproksimatsiooniomaduse efektiivne kriteerium, mille rakendusena tõestatakse üldistus Godefroy– Saphari teoreemile meetrilise aproksimatsiooniomaduse ülekandumiseks Banachi ruumi kaasruumile, mis rakendub ka Banachi võredes. Näidatakse, et tõkestatud kumerat aproksimatsiooniomadust saab lähteruumilt üle kanda kaasruumile kahel põhilisel juhul: 1) eeldusel, et lähteruum rahuldab laiendatava lokaalse refleksiivsuse ning lokaalse refleksiivsuse printsiibi teatavaid nõrgendatud versioone; 2) eeldusel, et kaasruumil on juba olemas tõkestatud kumera aproksimatsiooniomaduse nõrgem versioon. Need tulemused annavad üldise meetodi erisuguste tõkestatud aproksimatsiooniomaduste ülekandmiseks lähteruumilt kaasruumile ning üldistavad ja parendavad teadaolevaid tulemusi klassikalise tõkestatud aproksimatsiooniomaduse kohta.