Browsing by Author "Verenich, Ilya"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Explainable predictive monitoring of temporal measures of business processes(2019-01-07) Verenich, Ilya; Dumas, Marlon, juhendaja; Maggi, Fabrizio Maria, juhendaja; La Rosa, Marcello, juhendaja; Ter Hofstede, Arthur, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondKaasaegsed ettevõtte infosüsteemid võimaldavad ettevõtetel koguda detailset informatsiooni äriprotsesside täitmiste kohta. Eelnev koos masinõppe meetoditega võimaldab kasutada andmejuhitavaid ja ennustatavaid lähenemisi äriprotsesside jõudluse jälgimiseks. Kasutades ennustuslike äriprotsesside jälgimise tehnikaid on võimalik jõudluse probleeme ennustada ning soovimatu tegurite mõju ennetavalt leevendada. Tüüpilised küsimused, millega tegeleb ennustuslik protsesside jälgimine on “millal antud äriprotsess lõppeb?” või “mis on kõige tõenäolisem järgmine sündmus antud äriprotsessi jaoks?”. Suurim osa olemasolevatest lahendustest eelistavad täpsust selgitatavusele. Praktikas, selgitatavus on ennustatavate tehnikate tähtis tunnus. Ennustused, kas protsessi täitmine ebaõnnestub või selle täitmisel võivad tekkida raskused, pole piisavad. On oluline kasutajatele seletada, kuidas on selline ennustuse tulemus saavutatud ning mida saab teha soovimatu tulemuse ennetamiseks. Töö pakub välja kaks meetodit ennustatavate mudelite konstrueerimiseks, mis võimaldavad jälgida äriprotsesse ning keskenduvad selgitatavusel. Seda saavutatakse ennustuse lahtivõtmisega elementaarosadeks. Näiteks, kui ennustatakse, et äriprotsessi lõpuni on jäänud aega 20 tundi, siis saame anda seletust, et see aeg on moodustatud kõikide seni käsitlemata tegevuste lõpetamiseks vajalikust ajast. Töös võrreldakse omavahel eelmainitud meetodeid, käsitledes äriprotsesse erinevatest valdkondadest. Hindamine toob esile erinevusi selgitatava ja täpsusele põhinevale lähenemiste vahel. Töö teaduslik panus on ennustuslikuks protsesside jälgimiseks vabavaralise tööriista arendamine. Süsteemi nimeks on Nirdizati ning see süsteem võimaldab treenida ennustuslike masinõppe mudeleid, kasutades nii töös kirjeldatud meetodeid kui ka kolmanda osapoole meetodeid. Hiljem saab treenitud mudeleid kasutada hetkel käivate äriprotsesside tulemuste ennustamiseks, mis saab aidata kasutajaid reaalajas.Item Sotsiaalvõrgustikes pakutavate toodete tarvituselevõtu ennustamine kasutajate võrgustikuväärtuse abil(2014) Verenich, Ilya; Kikas, Riivo; Dumas, MarlonKäesolevas töös uurime uue toote kasutuselevõtmist sotsiaalvõrgustikus, eesmärgiga tuvastada grupp kasutajaid kellele suunatud turunduskampaania oleks võimalikult suure efektiivsusega ning mille tagajärjel suureneks toote kasutajate arv. Alusmudelina kasutame olemasolevat meetodit hindamaks kasutajate individuaalset tõenäosust toote kasutuselevõtuks. Mudelit treenitakse ja hinnatakse ajaliselt eraldatud andmetel. Saadud mudeli täpsus on oluliselt parem kui kasutada juhuslikku arvamist. Mudeli analüüsil avastame, et eksisteerib tugev surve kaaslastelt toote kasutuselevõtuks. Me hindame kasutajate omavahelist mõju üksteisele analüüsides ajaliselt korreleeritud toote tarvituselevõtu omadusi. Me rakendame seda mudelis, mis tuvastab mõjukad kasutajad võrgustikus, kellel on võime veenda oma kaaslasi toodet kasutama. Töös tutvustame kasutaja kasulikkuse mõistet, mis ühendab kasutaja individuaalse tõenäosuse toote kasutuselevõtuks ja tema võimalikku mõju kaaslastele võrgustikus. Kasutades simuleeritud turunduskampaaniat andmetel, me näitame, et sihtides sama arvu kasutajaid, on kõrge kasulikkusega kasutajate sihtimise tulemusena tootel rohkem uusi kasutajaid kui kasutada ainult kasutaja individuaalse tõenäosuse või mõjupõhist mudelit, mis kinnitab meetodi suuremat praktilist väärtust.