Sirvi Kuupäev , alustades "2018-11-27" järgi
Nüüd näidatakse 1 - 1 1
- Tulemused lehekülje kohta
- Sorteerimisvalikud
listelement.badge.dso-type Kirje , Computational and statistical methods for DNA sequencing data analysis and applications in the Estonian Biobank cohort(2018-11-27) Kals, Mart; Fischer, Krista, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkondTänapäeval võimaldavad teise põlvkonna sekveneerimisel (next-generation sequencing, NGS) põhinevad meetodid määrata inimese genoomi järjestusi suurtes kohortides. Seejuures toodetakse väga suuri andmemahtusid, mis tekitavad mitmeid väljakutseid nii informaatika kui statistika valdkonnas. TÜ Eesti Geenivaramu (TÜ EGV) on aastatel 2002-2011 kogunud enam kui 50 000 inimese geeniproovi ja käesoleval aastal lisandub veel 100 000. Praeguseks hetkeks on üle 5 500 geenidoonori DNA-d analüüsitud erinevate NGS meetoditega. Käesolevas doktoritöös on pakutud üldine raamistik TÜ EGV-s toodetud NGS-andmete töötluseks ning lisaks on uuritud, kuidas võimalikult hästi arvestada Eesti päritolu isikute geneetilist eripära. Üheks levinud NGS meetodiks on eksoomi ehk kõigi valku kodeerivate geenipiirkondade sekveneerimine, mis võimaldab efektiivselt leida harvu ja de novo geenivariante ja leiab seetõttu rakendust meditsiinigeneetikas mendeliaarsete haiguste geenimutatsioonide tuvastamisel. Doktoritöö esimeses osas on analüüsitud kolme Eesti perekonna andmeid ja kõigil kolmel juhul kindlaks tehtud potentsiaalne patogeenne mutatsioon, mis lubab tulevikus välja töötada paremaid ravimeetodeid. Samuti on läbi viidud genoomi sekveneerimisandmete analüüs kliinilise vere näitajatega. See analüüs tõi välja populatsioonipõhise biopanga eelised, mis lisaks rikkalikele genoomiandmetele sisaldab ka väärtuslikku informatsiooni erinevate haiguste ja tunnuste kohta. Uuringus tuvastati olulisi seoseid CEBPA geenivariantide ja basofiilide arvu vahel, kusjuures viimasel on roll mitmete autoimmuunhaiguste sümptomaatikas. Ülegenoomsete assotsiatsiooniuuringute võimsuse suurendamiseks kasutatakse puuduvate geenivariantide ennustamist ehk imputeerimist. Muutmaks just Eesti päritolu isikute andmeanalüüsi tõhusamaks, on kasutatud genoomi sekveneerimisandmeid eestlaste-spetsiifilise imputatsioonipaneeli loomiseks. Seejärel on imputeeritud puuduvaid geenivariante kolmel moel – kasutades nii eestlaste-spetsiifilist kui ka kahte multi-etnilist paneeli. Võrdlustulemused näitasid, et eestlaste-spetsiifilise paneeli kasutamisel õnnestub määrata rohkem parema kvaliteediga geenivariante ning loodud paneeli eelis tuleb eriti esile harvaesinevate variantide puhul.