Andmebaasi logo
Valdkonnad ja kollektsioonid
Kogu ADA
Eesti
English
Deutsch
  1. Esileht
  2. Sirvi kuupäeva järgi

Sirvi Kuupäev , alustades "2023-09-25" järgi

Filtreeri tulemusi aasta või kuu järgi
Nüüd näidatakse 1 - 1 1
  • Tulemused lehekülje kohta
  • Sorteerimisvalikud
  • Laen...
    Pisipilt
    listelement.badge.dso-type Kirje ,
    Fighting misinformation in the digital age: a comprehensive strategy for characterizing, identifying, and mitigating misinformation on online social media platforms
    (2023-09-25) Sharma, Shakshi; Sharma, Rajesh, juhendaja; Tartu Ülikool. Loodus- ja täppisteaduste valdkond
    Veebipõhiste sotsiaalmeediaplatvormide, nagu Twitter ja Facebook, esilekerkimine on hõlbustanud valeteabe ülemaailmset levitamist, soodustades sotsiaalse hirmu, ärevuse ja majandusliku kahju kasvu. Lõputöö uurib mitmekülgset lähenemisviisi desinformatsiooniga võitlemiseks digiajastul, keskendudes kolmele põhidimensioonile: valeinformatsiooni sisu tuvastamine, raamistiku väljatöötamine valeinformatsiooni levitajate tuvastamiseks, ja tõhusate desinformatsioonivastaste meetmete rakendamine. Esiteks on meie väljapakutud postituste iseloomustamise meetodi eesmärk mõista kuulujuttudest ja mittekuulujuttudest postituste tunnuseid, et tuvastada postitajate kognitiivne tegevus ja desinformatsiooni levitamise motiivid. Sotsiaalmeediapostituste omaduste põhjalik uurimine aitab teadlaskonnal tuvastada ja vältida desinformatsiooni. Teiseks ei ole varasemad meetodid kahtlaste või pahatahtlike kasutajate ja desinformatsiooni tuvastamiseks Twitteris ja teistel sarnastel platvormidel piisavalt kaalunud kasutajatasandil toimuvat tuvastamist. Ühe postituse põhjal kasutaja kuulujuttude levitajaks liigitamisest ei piisa. Meie panus sellesse valdkonda on klassifitseerimisraamistik, mis ühendab parema lähenemisviisi väljatöötamiseks mitmed postitused ja võrguteabe. Kolmandaks on olemasolevad sotsiaalmeedias desinformatsiooni leviku piiramise lähenemisviisid kohati piiratud, näiteks puudub väline modereerimine ja süsteem tugineb rangetele eeldustele. Esitame automatiseeritud lahenduse valeinformatsiooni suuremahuliseks ümberlükkamiseks, kasutades selleks sotsiaalmeedia andmeid ja kureeritud kontrollitud faktidega andmehoidlaid. Eelkõige keskendutakse selles aspektis Twitteri platvormile ja COVID-19 väärinfole, uurides kahte teineteist täiendavat lähenemisviisi.

DSpace tarkvara autoriõigus © 2002-2025 LYRASIS

  • Teavituste seaded
  • Saada tagasisidet