Improving Semantic Segmentation of Microscopy Images Using Rotation Equivariant Convolutional Networks

dc.contributor.advisorFishman, Dmytro, juhendaja
dc.contributor.authorTürk, Marten
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-08-15T09:18:31Z
dc.date.available2023-08-15T09:18:31Z
dc.date.issued2022
dc.description.abstractThe segmentation of the cell nuclei is one of the first steps in medical image analysis workflow. Organisations conducting experiments with image analysis are mainly pharmaceutical companies and biomedicine laboratories, which need to process vast amounts of data and quantify it. The goal of these experiments could be to produce new drugs or diagnose diseases. Due to advancements in deep learning, these processes of nuclei segmentation have been automated, and the level of accuracy is relatively high. However, new methods for improving the accuracy of the models are constantly proposed. One of these proposals uses rotation equivariant convolutional neural networks based on group theory. These networks can produce invariant predictions regardless of the rotation of the input object. This bachelor’s thesis shows that rotation equivariant convolutional neural networks improve the semantic segmentation of nuclei and increase the generalisation capabilities of a model trained on fluorescent images. Additionally, the work gives an overview of failed attempts with brightfield images, outlines the already existing rotation equivariant models on the internet and describes their implementation complexity.et
dc.identifier.urihttps://hdl.handle.net/10062/91600
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectComputer scienceet
dc.subjectbiomedicineet
dc.subjectmachine learninget
dc.subjectconvolutional neural networkset
dc.subjectsegmentationet
dc.subjectimage analysiset
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleImproving Semantic Segmentation of Microscopy Images Using Rotation Equivariant Convolutional Networkset
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Turk_BSc_informaatika_2022.pdf
Suurus:
3.24 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Pisipilt ei ole saadaval
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: