Leading vehicle length estimation using pressure data for use in autonomous driving

dc.contributor.advisorMuhammad, Naveed, juhendaja
dc.contributor.authorOttan, Matis
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-08-18T10:36:14Z
dc.date.available2023-08-18T10:36:14Z
dc.date.issued2022
dc.description.abstractOvertaking vehicles is a risky manoeuvre for human drivers and an even more difficult challenge for autonomous cars. The algorithms for overtaking require extensive information about the surrounding environment including knowing the length of a leading vehicle. The usual sensing modalities used in autonomous vehicles (vision, radar, LiDAR) are not suitable for estimating that length. In literature, flow sensing has been shown to aid underwater robots in navigation and localization. This suggests that flow sensing could also provide useful information for autonomous vehicles. This study investigates air flow data behind truck-sized bluff bodies using data acquired from Computational Fluid Dynamics (CFD) simulations. The proposed features for classification are based on Fast-Fourier transforms. The results show that pressure data can be used to differentiate between various truck lengths, indicating that flow sensors could aid autonomous vehicles in overtaking.et
dc.identifier.urihttps://hdl.handle.net/10062/91651
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectKujunduset
dc.subjectpaigutuset
dc.subjectmallet
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleLeading vehicle length estimation using pressure data for use in autonomous drivinget
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Ottan_informaatika_2022.pdf
Suurus:
1.03 MB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: