Revisiting Projection-based Data Transfer for Cross-Lingual Named Entity Recognition in Low-Resource Languages
Kuupäev
2025-03
Ajakirja pealkiri
Ajakirja ISSN
Köite pealkiri
Kirjastaja
University of Tartu Library
Abstrakt
Cross-lingual Named Entity Recognition (NER) leverages knowledge transfer between languages to identify and classify named entities, making it particularly useful for low-resource languages. We show that the data-based cross-lingual transfer method is an effective technique for cross-lingual NER and can outperform multi-lingual language models for low-resource languages. This paper introduces two key enhancements to the annotation projection step in cross-lingual NER for low-resource languages. First, we explore refining word alignments using back-translation to improve accuracy. Second, we present a novel formalized projection approach of matching source entities with extracted target candidates. Through extensive experiments on two datasets spanning 57 languages, we demonstrated that our approach surpasses existing projection-based methods in low-resource settings. These findings highlight the robustness of projection-based data transfer as an alternative to model-based methods for cross-lingual named entity recognition in low-resource languages.