Patsientide ravimikasutuse klasterdamine ATC koodide alusel

dc.contributor.advisorHaug, Markus, juhendaja
dc.contributor.authorKonsa, Charleen
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-09-30T07:45:25Z
dc.date.available2024-09-30T07:45:25Z
dc.date.issued2024
dc.description.abstractHealthcare data provides an opportunity to study patients’ drug trajectories. This thesis aims to create a workflow that clusters patients based on their drug use using ATC codes. In addition, a user interface is developed that can be used to interactively run the workflow. The workflow consists of 5 parts: filtering, drug trajectories compilation, drug trajectories comparison, drug trajectories clustering, and cluster analysis. As a result of the workflow, patients are divided into clusters, which are given a simple overview. The results can be used for further research to find the reasons for the different drug trajectories. The user interface consists of 4 parts. Its sidebar displays the main user inputs that can influence patient selection, clustering, and analysis. Tabs display the results of clustering and analysis. The results and the used parameters in the user interface can be downloaded as RDS and CSV files.
dc.identifier.urihttps://hdl.handle.net/10062/104959
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectR
dc.subjectklasterdamine
dc.subjectaegridade analüüs
dc.subjectravimikasutus
dc.subjectastma
dc.subjectclustering
dc.subjecttime series analysis
dc.subjectdrug use
dc.subjectasthma
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titlePatsientide ravimikasutuse klasterdamine ATC koodide alusel
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Konsa_informaatika_2024.pdf
Suurus:
1.44 MB
Formaat:
Adobe Portable Document Format