Pidevate tervisenäitajate kaugeleulatuv ennustamine

dc.contributor.advisorReisberg, Sulev, juhendaja
dc.contributor.authorLepmets, Belinda
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-09-26T07:26:41Z
dc.date.available2024-09-26T07:26:41Z
dc.date.issued2024
dc.description.abstractThis bachelor’s thesis explores the possibility and methodology of creating a model for predicting continuous health measurements over a long-term period using short-term health data. To achieve this, a similarity-based prediction model was developed, relying on a short-term observation window dataset containing measurements from numerous patients. The most similar patient is selected based on initial parameters, and step-by-step progression through their and other patients’ data forms the basis for long-term prognosis. This model was demonstrated using four test cases: height, weight, pulse, and systolic blood pressure, utilizing data from the RITA-MAITT and ELIKTU studies. The height prediction model showed the highest predictive accuracy among these test cases, with an average error of 5.5 cm for model testing and 5.1 cm for the “average of three predictions” model. While this approach may not be suitable for predicting all continuous health measurements, it yields sufficiently accurate results for certain indicators, thus warranting further refinement and investigation of the method.
dc.identifier.urihttps://hdl.handle.net/10062/104919
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectHealth data
dc.subjectprediction
dc.subjectcontinuous measurements
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titlePidevate tervisenäitajate kaugeleulatuv ennustamine
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lepmets_Informaatika_2024.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format