Paragraph-Level Machine Translation for Low-Resource Finno-Ugric Languages

dc.contributor.authorPashchenko, Dmytro
dc.contributor.authorYankovskaya, Lisa
dc.contributor.authorFishel, Mark
dc.contributor.editorJohansson, Richard
dc.contributor.editorStymne, Sara
dc.coverage.spatialTallinn, Estonia
dc.date.accessioned2025-02-18T14:03:22Z
dc.date.available2025-02-18T14:03:22Z
dc.date.issued2025-03
dc.description.abstractWe develop paragraph-level machine translation for four low-resource Finno-Ugric languages: Proper Karelian, Livvi, Ludian, and Veps. The approach is based on sentence-level pre-trained translation models, which are fine-tuned with paragraph-parallel data. This allows the resulting model to develop a native ability to handle discource-level phenomena correctly, in particular translating from grammatically gender-neutral input in Finno-Ugric languages. We collect monolingual and parallel paragraph-level corpora for these languages. Our experiments show that paragraph-level translation models can translate sentences no worse than sentence-level systems, while handling discourse-level phenomena better. For evaluation, we manually translate part of FLORES-200 into these four languages. All our results, data, and models are released openly.
dc.identifier.urihttps://hdl.handle.net/10062/107242
dc.language.isoen
dc.publisherUniversity of Tartu Library
dc.relation.ispartofseriesNEALT Proceedings Series, No. 57
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleParagraph-Level Machine Translation for Low-Resource Finno-Ugric Languages
dc.typeArticle

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
2025_nodalida_1_50.pdf
Suurus:
243.91 KB
Formaat:
Adobe Portable Document Format