Knowledge Graph Reasoning with Reinforcement Learning for Explainable Fact-checking

dc.contributor.advisorMohit, Mayank, juhendaja
dc.contributor.advisorRajesh, Sharma, juhendaja
dc.contributor.authorNikopensius, Gustav
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2023-09-01T10:29:28Z
dc.date.available2023-09-01T10:29:28Z
dc.date.issued2022
dc.description.abstractManual fact checking can not keep up with the pace at which false claims are produced and spread across the web. Computers are much faster at checking facts than humans. Automated fact checking usually involves comparing a fact claim to some set of knowledge. This comparison is oftentimes carried out by a machine learning algorithm. An effective way of representing knowledge that is also highly machine-readable is Knowledge Graphs. This study frames the problem of computational fact-checking as a reinforcement learning based knowledge graph reasoning problem. The experimental results reveal that reasoning over a knowledge graph is an effective way of producing human readable explanations in the form of paths and classifications for fact claims. The paths may aid fact-checking professionals with highly readable clues, improving trust and transparency in AI systems. The artificial intelligence aims to compute a path that either proves or disproves a factual claim, but does not provide a verdict itself. A verdict is reached by a voting mechanism which utilizes paths produced by the artificial intelligence. These paths can be presented to a human reader so that they themselves can decide whether or not the provided evidence is convincing or not. Understanding between AI and humans makes for trust and cooperation.et
dc.identifier.urihttps://hdl.handle.net/10062/91962
dc.language.isoestet
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectExplainable Machine Learninget
dc.subjectFact-checkinget
dc.subjectKnowledge graphet
dc.subjectReinforcement learninget
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticset
dc.subject.otherinfotechnologyet
dc.titleKnowledge Graph Reasoning with Reinforcement Learning for Explainable Fact-checkinget
dc.typeThesiset

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
Nikopensius_BA.pdf
Suurus:
457.75 KB
Formaat:
Adobe Portable Document Format
Kirjeldus:

Litsentsi pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
license.txt
Suurus:
1.71 KB
Formaat:
Item-specific license agreed upon to submission
Kirjeldus: