Predicting the success of Ukraine's restoration projects: a machine learning analysis using DREAM ecosystem data

dc.contributor.advisorKhutkyy, Dmytro, juhendaja
dc.contributor.authorKsienich, Volodymyr
dc.contributor.otherTartu Ülikool. Sotsiaalteaduste valdkondet
dc.contributor.otherTartu Ülikool. Johan Skytte poliitikauuringute instituutet
dc.date.accessioned2025-06-13T08:24:50Z
dc.date.available2025-06-13T08:24:50Z
dc.date.issued2025
dc.description.abstractUkraine’s full‑scale war has generated 157 billion USD in infrastructure losses and an urgent 524 billion USD reconstruction bill. While prior scholarship isolates single drivers of project delivery, it rarely combines finance, governance, digital capacity and societal sentiment in one empirical frame. This study merges five open datasets (DREAM project register, DREAM‑Completeness audit, Transparent Cities scores, Digital‑Index metrics and IRI opinion surveys), yielding a moderate‑N panel of 190 fully documented wartime restoration projects. A six‑pillar theoretical model is operationalised through logistic regression and three ensemble learners. Results show that fragmenting procurements into additional contract lots multiplies completion odds by ≈9.8; publishing real‑time finance schedules raises success probability by 12 percentage points independent of budget size; and a one‑SD increase in regional digital maturity adds five points, but only where e‑services accompany raw openness. Findings nuance ‘transparency backlash’ theory and suggest an integrated policy bundle: mandatory micro‑lotting, conditional disbursement upon schedule disclosure, and targeted e‑government investment.en
dc.description.urihttps://www.ester.ee/record=b5753359*est
dc.identifier.urihttps://hdl.handle.net/10062/111327
dc.language.isoen
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subject.othermagistritöödet
dc.subject.otherVenemaa-Ukraina sõda, 2014-et
dc.subject.othersõjakahjudet
dc.subject.othertaastamineet
dc.subject.othertehisõpeet
dc.subject.otherandmeanalüüset
dc.subject.otherUkraina (riik)et
dc.titlePredicting the success of Ukraine's restoration projects: a machine learning analysis using DREAM ecosystem dataen
dc.typeThesisen

Failid

Originaal pakett

Nüüd näidatakse 1 - 1 1
Laen...
Pisipilt
Nimi:
ksienich_volodymyr_ma_2025.pdf
Suurus:
4.3 MB
Formaat:
Adobe Portable Document Format