Ettekannete automaatne sessioonideks jagamine teaduskonverentside jaoks

dc.contributor.advisorKull, Meelis, juhendaja
dc.contributor.authorHeikla, Mia Marta
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2024-10-04T08:19:22Z
dc.date.available2024-10-04T08:19:22Z
dc.date.issued2024
dc.description.abstractThe aim of this work is to create a method, using a language model, that can divide the articles accepted for a scientific conference into sessions by topic, so that participants can listen to a succession of presentations on a similar topic. In developing the method, it is necessary to know in advance the problem of scheduling a conference, the principles of creating a good session title, and the principles of creating story prompts. The titles and abstracts of scientific articles will be provided for the method. Based on this data, the language model is queried to generate possible session titles, followed by the use of prompts to generalise the titles. Occurring titles are reviewed to ensure their suitability in the context of a machine learning conference by removing low-value titles. The remaining titles are evaluated with a language model according to the content and title of each presentation, followed by a segmentation into sessions using a linear integer optimization algorithm. The process is completed by using Levenshtein distance to estimate the similarity of the segmentation of the sessions.
dc.identifier.urihttps://hdl.handle.net/10062/105118
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Estoniaen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/
dc.subjectKonverentsi ajagraafiku probleem
dc.subjectkeelemudelid
dc.subjectprompt
dc.subjectsessioonide jaotamine
dc.subjectteaduskonverents
dc.subjectConference Timetable Problem
dc.subjectLanguage Models
dc.subjectPrompt
dc.subjectDivision of Sessions
dc.subjectScientific Conference
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleEttekannete automaatne sessioonideks jagamine teaduskonverentside jaoks
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
Heikla_ Informaatika_2024.pdf
Suurus:
737.58 KB
Formaat:
Adobe Portable Document Format
Pisipilt ei ole saadaval
Nimi:
koodid_ja_andmed.zip
Suurus:
612.4 KB
Formaat:
Compressed ZIP