Heliklipist signaali eraldamine ja minimaalse treeningandmestiku suuruse tuvastamine olmehelide klassifitseerimiseks

dc.contributor.advisorSepp, Tiit, juhendaja
dc.contributor.advisorPalts, Tauno, juhendaja
dc.contributor.authorKaare, Johanna
dc.contributor.otherTartu Ülikool. Loodus- ja täppisteaduste valdkondet
dc.contributor.otherTartu Ülikool. Arvutiteaduse instituutet
dc.date.accessioned2025-10-20T07:37:18Z
dc.date.available2025-10-20T07:37:18Z
dc.date.issued2025
dc.description.abstractPeople with hearing impairments may not hear important sounds, which can make daily life more challenging. For this reason, they require sound detection tools. Before detecting sounds, it is necessary to separate the signal from background noise in audio clips and determine the minimum size of the training dataset needed for sound detection. In this work, six algorithms were developed for extracting signals from audio clips, categorized into amplitude-based and frequency-based methods. All of the developed algorithms performed better at extracting signals from audio clips than Google’s voice activity detection method WebRTC. Additionally, based on the Student’s t-test, it was found that the minimum number of audio files required to retrain a YAMNet-based sound detection model is 10.
dc.identifier.urihttps://hdl.handle.net/10062/116866
dc.language.isoet
dc.publisherTartu Ülikoolet
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectHelide klassifitseerimine
dc.subjectheliklipist signaali eraldamine
dc.subjectminimaalne treenigandmestiku suurus
dc.subjectAudio classification
dc.subjectsignal extraction from an audio clip
dc.subjectminimum trainig set size
dc.subject.otherbakalaureusetöödet
dc.subject.otherinformaatikaet
dc.subject.otherinfotehnoloogiaet
dc.subject.otherinformaticsen
dc.subject.otherinfotechnologyen
dc.titleHeliklipist signaali eraldamine ja minimaalse treeningandmestiku suuruse tuvastamine olmehelide klassifitseerimiseks
dc.typeThesis

Failid

Originaal pakett

Nüüd näidatakse 1 - 2 2
Laen...
Pisipilt
Nimi:
Kaare_Informaatika_2025.pdf
Suurus:
3.42 MB
Formaat:
Adobe Portable Document Format
Laen...
Pisipilt
Nimi:
Kaare_informaatika_luhiversioon.pdf
Suurus:
69.27 KB
Formaat:
Adobe Portable Document Format