Classification of Alzheimer’s Disease From MRI Images

dc.contributor.advisorAvots, Egils, supervisor
dc.contributor.advisorAnbarjafari, Gholamreza, supersvisor
dc.contributor.authorElshatoury, Heba Hesham Hamed
dc.date.accessioned2019-06-04T08:57:10Z
dc.date.available2019-06-04T08:57:10Z
dc.date.issued2019
dc.description.abstractIn English: In this thesis work machine learning techniques are used to classify MRI brain scans of people with Alzheimers Disease. This work deals with binary classification between Alzheimers Disease (AD) and Cognitively Normal (CN). Supervised learning algorithms were used to train a classifier using MATLAB Classification Learner App in which the accuracy is being compared. The dataset used is from The Alzheimers Disease Neuroimaging Initiative (ADNI). Histogram is used for all slices of all images. Based on the highest performance, specific slices were selected for further examination. Majority voting and weighted voting is applied in which the accuracy is calculated and the best result is 69.5% for majority voting. Eesti keeles: Käesolevas töös kasutatakse masinõppe meetodeid, et klassifitseerida Alzheimeri tõvega inimeste MRI aju skaneeringuid. Töös rakendatakse binaarset liigitust Alzheimeri tõve (AD) ja kognitiivse normaalsuse (CD) vahel. Kasutati juhendatud masinõppealgoritme, et treenida klassifikaatoreid MATLAB’i klassifikaatorite õpperakenduses (Classification Learner App), kus võrreldi algoritmi täpsust. Kasutatav andmestik pärineb ADNI andmebaasist (The Alzheimer’s Disease Neuroimaging Initiative). Kõikidest piltidest võetud osadele arvutati histogrammid. Kõrgeima jõudluse põhjal valiti konkreetsed osad edasiseks uurimiseks. Võtteldi enamus ja kaalutud valikute täpsust ja parimaks tulemuseks saadi enamusvalikuid kasutades 69.5%.en
dc.identifier.urihttp://hdl.handle.net/10062/63936
dc.language.isoenget
dc.publisherTartu Ülikoolet
dc.rightsopenAccesset
dc.rightsAutorile viitamine + Mitteäriline eesmärk + Tuletatud teoste keeld 3.0 Eesti*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ee/*
dc.subjectComputer Visionen
dc.subjectMachine Learningen
dc.subjectAlzheimer’s Diseaseen
dc.subjectfeature extractionen
dc.subjectmagnetic resonance imagingen
dc.subjectmasinõpeet
dc.subjectAlzheimeri tõbiet
dc.subjectmagnetresonantstomograafiaet
dc.subjectarvutinägemineet
dc.titleClassification of Alzheimer’s Disease From MRI Imagesen
dc.title.alternativeAlzheimeri tõve klassifitseerimine MRI-piltidestet
dc.typeThesiset

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Elshatoury_BSc2019.pdf
Size:
5.38 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: